《hello-algo》树—— 小记随笔

二叉树

「二叉树 binary tree」是一种非线性数据结构,代表“祖先”与“后代”之间的派生关系,体现了“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用和右子节点引用。

/* 二叉树节点结构体 */
type TreeNode struct {
    Val   int
    Left  *TreeNode
    Right *TreeNode
}
/* 构造方法 */
func NewTreeNode(v int) *TreeNode {
    return &TreeNode{
        Left:  nil, // 左子节点指针
        Right: nil, // 右子节点指针
        Val:   v,   // 节点值
    }
}

img

二叉树常见术语

*「根节点 root node」:位于二叉树顶层的节点,没有父节点。
*「叶节点 leaf node」:没有子节点的节点,其两个指针均指向 None 。
*「边 edge」:连接两个节点的线段,即节点引用(指针)。

  • 节点所在的「层 level」:从顶至底递增,根节点所在层为 1 。
  • 节点的「度 degree」:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
  • 二叉树的「高度 height」:从根节点到最远叶节点所经过的边的数量。
  • 节点的「深度 depth」:从根节点到该节点所经过的边的数量。
  • 节点的「高度 height」:从距离该节点最远的叶节点到该节点所经过的边的数量。

img

二叉树基本操作

初始化二叉树

/* 初始化二叉树 */
// 初始化节点
n1 := NewTreeNode(1)
n2 := NewTreeNode(2)
n3 := NewTreeNode(3)
n4 := NewTreeNode(4)
n5 := NewTreeNode(5)
// 构建节点之间的引用(指针)
n1.Left = n2
n1.Right = n3
n2.Left = n4
n2.Right = n5

插入与删除节点

img

/* 插入与删除节点 */
// 在 n1 -> n2 中间插入节点 P
p := NewTreeNode(0)
n1.Left = p
p.Left = n2
// 删除节点 P
n1.Left = n2

常见二叉树类型

完美二叉树

「完美二叉树 perfect binary tree」所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 (0) ,其余所有节点的度都为 (2) ;若树的高度为 (h) ,则节点总数为 (2^{h+1} - 1) ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

img

完全二叉树

「完全二叉树 complete binary tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。

img

完满二叉树

「完满二叉树 full binary tree」除了叶节点之外,其余所有节点都有两个子节点。

img

平衡二叉树

「平衡二叉树 balanced binary tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。

img

二叉树的退化

当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。

  • 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
  • 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 (O(n)) 。

img

二叉树遍历

层序遍历

层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。

层序遍历本质上属于「广度优先遍历 breadth-first traversal」,也称「广度优先搜索 breadth-first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。

img

广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下:

/* 层序遍历 */
func levelOrder(root *TreeNode) []any {
    // 初始化队列,加入根节点
    queue := list.New()
    queue.PushBack(root)
    // 初始化一个切片,用于保存遍历序列
    nums := make([]any, 0)
    for queue.Len() > 0 {
        // 队列出队
        node := queue.Remove(queue.Front()).(*TreeNode)
        // 保存节点值
        nums = append(nums, node.Val)
        if node.Left != nil {
            // 左子节点入队
            queue.PushBack(node.Left)
        }
        if node.Right != nil {
            // 右子节点入队
            queue.PushBack(node.Right)
        }
    }
    return nums
}
  • 时间复杂度为 (O(n)) :所有节点被访问一次,使用 (O(n)) 时间,其中 (n) 为节点数量。
  • 空间复杂度为 (O(n)) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 ((n + 1) / 2) 个节点,占用 (O(n)) 空间。

前序、中序、后序遍历

前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,也称「深度优先搜索 depth-first search, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。

深度优先遍历就像是绕着整棵二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。

img

深度优先搜索通常基于递归实现:

/* 前序遍历 */
func preOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:根节点 -> 左子树 -> 右子树
    nums = append(nums, node.Val)
    preOrder(node.Left)
    preOrder(node.Right)
}

/* 中序遍历 */
func inOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(node.Left)
    nums = append(nums, node.Val)
    inOrder(node.Right)
}

/* 后序遍历 */
func postOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(node.Left)
    postOrder(node.Right)
    nums = append(nums, node.Val)
}
  • 时间复杂度为 (O(n)) :所有节点被访问一次,使用 (O(n)) 时间。
  • 空间复杂度为 (O(n)) :在最差情况下,即树退化为链表时,递归深度达到 (n) ,系统占用 (O(n)) 栈帧空间。

二叉树数组表示

表示完美二叉树

先分析一个简单案例。给定一棵完美二叉树,我们将所有节点按照层序遍历的顺序存储在一个数组中,则每个节点都对应唯一的数组索引。

根据层序遍历的特性,我们可以推导出父节点索引与子节点索引之间的“映射公式”:若某节点的索引为 (i) ,则该节点的左子节点索引为 (2i + 1) ,右子节点索引为 (2i + 2) 。图 7-12 展示了各个节点索引之间的映射关系。

img

映射公式的角色相当于链表中的指针。给定数组中的任意一个节点,我们都可以通过映射公式来访问它的左(右)子节点。

表示任意二叉树

我们可以考虑在层序遍历序列中显式地写出所有 None 。如图 7-14 所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。示例代码如下:

img

值得说明的是,完全二叉树非常适合使用数组来表示。回顾完全二叉树的定义,None 只出现在最底层且靠右的位置,因此所有 None 一定出现在层序遍历序列的末尾。

这意味着使用数组表示完全二叉树时,可以省略存储所有 None ,非常方便。

img

以下代码实现了一棵基于数组表示的二叉树,包括以下几种操作。

  • 给定某节点,获取它的值、左(右)子节点、父节点。
  • 获取前序遍历、中序遍历、后序遍历、层序遍历序列。
/* 数组表示下的二叉树类 */
type arrayBinaryTree struct {
    tree []any
}

/* 构造方法 */
func newArrayBinaryTree(arr []any) *arrayBinaryTree {
    return &arrayBinaryTree{
        tree: arr,
    }
}

/* 列表容量 */
func (abt *arrayBinaryTree) size() int {
    return len(abt.tree)
}

/* 获取索引为 i 节点的值 */
func (abt *arrayBinaryTree) val(i int) any {
    // 若索引越界,则返回 null ,代表空位
    if i < 0 || i >= abt.size() {
        return nil
    }
    return abt.tree[i]
}

/* 获取索引为 i 节点的左子节点的索引 */
func (abt *arrayBinaryTree) left(i int) int {
    return 2*i + 1
}

/* 获取索引为 i 节点的右子节点的索引 */
func (abt *arrayBinaryTree) right(i int) int {
    return 2*i + 2
}

/* 获取索引为 i 节点的父节点的索引 */
func (abt *arrayBinaryTree) parent(i int) int {
    return (i - 1) / 2
}

/* 层序遍历 */
func (abt *arrayBinaryTree) levelOrder() []any {
    var res []any
    // 直接遍历数组
    for i := 0; i < abt.size(); i++ {
        if abt.val(i) != nil {
            res = append(res, abt.val(i))
        }
    }
    return res
}

/* 深度优先遍历 */
func (abt *arrayBinaryTree) dfs(i int, order string, res *[]any) {
    // 若为空位,则返回
    if abt.val(i) == nil {
        return
    }
    // 前序遍历
    if order == "pre" {
        *res = append(*res, abt.val(i))
    }
    abt.dfs(abt.left(i), order, res)
    // 中序遍历
    if order == "in" {
        *res = append(*res, abt.val(i))
    }
    abt.dfs(abt.right(i), order, res)
    // 后序遍历
    if order == "post" {
        *res = append(*res, abt.val(i))
    }
}

/* 前序遍历 */
func (abt *arrayBinaryTree) preOrder() []any {
    var res []any
    abt.dfs(0, "pre", &res)
    return res
}

/* 中序遍历 */
func (abt *arrayBinaryTree) inOrder() []any {
    var res []any
    abt.dfs(0, "in", &res)
    return res
}

/* 后序遍历 */
func (abt *arrayBinaryTree) postOrder() []any {
    var res []any
    abt.dfs(0, "post", &res)
    return res
}

优点与局限性

二叉树的数组表示主要有以下优点。

  • 数组存储在连续的内存空间中,对缓存友好,访问与遍历速度较快。
  • 不需要存储指针,比较节省空间。
  • 允许随机访问节点。

然而,数组表示也存在一些局限性。

  • 数组存储需要连续内存空间,因此不适合存储数据量过大的树。
  • 增删节点需要通过数组插入与删除操作实现,效率较低。
  • 当二叉树中存在大量 None 时,数组中包含的节点数据比重较低,空间利用率较低。

二叉搜索树

「二叉搜索树 binary search tree」满足以下条件。

  • 对于根节点,左子树中所有节点的值 (<) 根节点的值 (<) 右子树中所有节点的值。
  • 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1. 。

img

二叉搜索树的操作

我们将二叉搜索树封装为一个类 BinarySearchTree ,并声明一个成员变量 root ,指向树的根节点。

查找节点

给定目标节点值 num ,可以根据二叉搜索树的性质来查找。如图 7-17 所示,我们声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系。

  • 若 cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right 。
  • 若 cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left 。
  • 若 cur.val = num ,说明找到目标节点,跳出循环并返回该节点。

img

二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 (O(\log n)) 时间。示例代码如下:

/* 查找节点 */
func (bst *binarySearchTree) search(num int) *TreeNode {
    node := bst.root
    // 循环查找,越过叶节点后跳出
    for node != nil {
        if node.Val.(int) < num {
            // 目标节点在 cur 的右子树中
            node = node.Right
        } else if node.Val.(int) > num {
            // 目标节点在 cur 的左子树中
            node = node.Left
        } else {
            // 找到目标节点,跳出循环
            break
        }
    }
    // 返回目标节点
    return node
}

插入节点

给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图 7-18 所示。

  • 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶节点(遍历至 None )时跳出循环。
  • 在该位置插入节点:初始化节点 num ,将该节点置于 None 的位置。

img

在代码实现中,需要注意以下两点。

  • 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
  • 为了实现插入节点,我们需要借助节点 pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以获取到其父节点,从而完成节点插入操作。
/* 插入节点 */
func (bst *binarySearchTree) insert(num int) {
    cur := bst.root
    // 若树为空,则初始化根节点
    if cur == nil {
        bst.root = NewTreeNode(num)
        return
    }
    // 待插入节点之前的节点位置
    var pre *TreeNode = nil
    // 循环查找,越过叶节点后跳出
    for cur != nil {
        if cur.Val == num {
            return
        }
        pre = cur
        if cur.Val.(int) < num {
            cur = cur.Right
        } else {
            cur = cur.Left
        }
    }
    // 插入节点
    node := NewTreeNode(num)
    if pre.Val.(int) < num {
        pre.Right = node
    } else {
        pre.Left = node
    }
}

与查找节点相同,插入节点使用 (O(\log n)) 时间。

删除节点

先在二叉树中查找到目标节点,再将其删除。与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。因此,我们根据目标节点的子节点数量,分 0、1 和 2 三种情况,执行对应的删除节点操作。

  • 当待删除节点的度为 (0) 时,表示该节点是叶节点,可以直接删除。

img

  • 当待删除节点的度为 (1) 时,将待删除节点替换为其子节点即可。

img

  • 当待删除节点的度为 (2) 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左子树 (<) 根节点 (<) 右子树”的性质,因此这个节点可以是右子树的最小节点或左子树的最大节点。

img

img

删除节点操作同样使用 (O(\log n)) 时间,其中查找待删除节点需要 (O(\log n)) 时间,获取中序遍历后继节点需要 (O(\log n)) 时间。示例代码如下:

/* 删除节点 */
func (bst *binarySearchTree) remove(num int) {
    cur := bst.root
    // 若树为空,直接提前返回
    if cur == nil {
        return
    }
    // 待删除节点之前的节点位置
    var pre *TreeNode = nil
    // 循环查找,越过叶节点后跳出
    for cur != nil {
        if cur.Val == num {
            break
        }
        pre = cur
        if cur.Val.(int) < num {
            // 待删除节点在右子树中
            cur = cur.Right
        } else {
            // 待删除节点在左子树中
            cur = cur.Left
        }
    }
    // 若无待删除节点,则直接返回
    if cur == nil {
        return
    }
    // 子节点数为 0 或 1
    if cur.Left == nil || cur.Right == nil {
        var child *TreeNode = nil
        // 取出待删除节点的子节点
        if cur.Left != nil {
            child = cur.Left
        } else {
            child = cur.Right
        }
        // 删除节点 cur
        if cur != bst.root {
            if pre.Left == cur {
                pre.Left = child
            } else {
                pre.Right = child
            }
        } else {
            // 若删除节点为根节点,则重新指定根节点
            bst.root = child
        }
        // 子节点数为 2
    } else {
        // 获取中序遍历中待删除节点 cur 的下一个节点
        tmp := cur.Right
        for tmp.Left != nil {
            tmp = tmp.Left
        }
        // 递归删除节点 tmp
        bst.remove(tmp.Val.(int))
        // 用 tmp 覆盖 cur
        cur.Val = tmp.Val
    }
}

中序遍历有序

二叉树的中序遍历遵循“左 (\rightarrow) 根 (\rightarrow) 右”的遍历顺序,而二叉搜索树满足“左子节点 (<) 根节点 (<) 右子节点”的大小关系。

这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉搜索树的中序遍历序列是升序的。

利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 (O(n)) 时间,无须进行额外的排序操作,非常高效。

img

二叉搜索树的效率

img

AVL 树

AVL 树常见术语

AVL 树既是二叉搜索树,也是平衡二叉树,同时满足这两类二叉树的所有性质,因此也被称为「平衡二叉搜索树 balanced binary search tree」。

节点高度

由于 AVL 树的相关操作需要获取节点高度,因此我们需要为节点类添加 height 变量:

/* AVL 树节点结构体 */
type TreeNode struct {
    Val    int       // 节点值
    Height int       // 节点高度
    Left   *TreeNode // 左子节点引用
    Right  *TreeNode // 右子节点引用
}

“节点高度”是指从该节点到它的最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 (0) ,而空节点的高度为 (-1) 。我们将创建两个工具函数,分别用于获取和更新节点的高度:

/* 获取节点高度 */
func (t *aVLTree) height(node *TreeNode) int {
    // 空节点高度为 -1 ,叶节点高度为 0
    if node != nil {
        return node.Height
    }
    return -1
}

/* 更新节点高度 */
func (t *aVLTree) updateHeight(node *TreeNode) {
    lh := t.height(node.Left)
    rh := t.height(node.Right)
    // 节点高度等于最高子树高度 + 1
    if lh > rh {
        node.Height = lh + 1
    } else {
        node.Height = rh + 1
    }
}

节点平衡因子

节点的「平衡因子 balance factor」定义为节点左子树的高度减去右子树的高度,同时规定空节点的平衡因子为 (0) 。我们同样将获取节点平衡因子的功能封装成函数,方便后续使用:

/* 获取平衡因子 */
func (t *aVLTree) balanceFactor(node *TreeNode) int {
    // 空节点平衡因子为 0
    if node == nil {
        return 0
    }
    // 节点平衡因子 = 左子树高度 - 右子树高度
    return t.height(node.Left) - t.height(node.Right)
}

设平衡因子为 (f) ,则一棵 AVL 树的任意节点的平衡因子皆满足 (-1 \le f \le 1) 。

AVL 树旋转

AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中序遍历序列的前提下,使失衡节点重新恢复平衡。换句话说,旋转操作既能保持“二叉搜索树”的性质,也能使树重新变为“平衡二叉树”。

我们将平衡因子绝对值 (> 1) 的节点称为“失衡节点”。根据节点失衡情况的不同,旋转操作分为四种:右旋、左旋、先右旋后左旋、先左旋后右旋。下面详细介绍这些旋转操作。

右旋

节点下方为平衡因子。从底至顶看,二叉树中首个失衡节点是“节点 3”。我们关注以该失衡节点为根节点的子树,将该节点记为 node ,其左子节点记为 child ,执行“右旋”操作。完成右旋后,子树恢复平衡,并且仍然保持二叉搜索树的性质。

img

img

当节点 child 有右子节点(记为 grand_child )时,需要在右旋中添加一步:将 grand_child 作为 node 的左子节点。

img

/* 右旋操作 */
func (t *aVLTree) rightRotate(node *TreeNode) *TreeNode {
    child := node.Left
    grandChild := child.Right
    // 以 child 为原点,将 node 向右旋转
    child.Right = node
    node.Left = grandChild
    // 更新节点高度
    t.updateHeight(node)
    t.updateHeight(child)
    // 返回旋转后子树的根节点
    return child
}

左旋

相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7-28 所示的“左旋”操作。

img

当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。

img

可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左旋的实现代码:

/* 左旋操作 */
func (t *aVLTree) leftRotate(node *TreeNode) *TreeNode {
    child := node.Right
    grandChild := child.Left
    // 以 child 为原点,将 node 向左旋转
    child.Left = node
    node.Right = grandChild
    // 更新节点高度
    t.updateHeight(node)
    t.updateHeight(child)
    // 返回旋转后子树的根节点
    return child
}

先左旋后右旋

仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”,再对 node 执行“右旋”。

img

先右旋后左旋

对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。

img

旋转的选择

img

我们通过判断失衡节点的平衡因子以及较高一侧子节点的平衡因子的正负号,来确定失衡节点属于图 7-32 中的哪种情况。

img

为了便于使用,我们将旋转操作封装成一个函数。有了这个函数,我们就能对各种失衡情况进行旋转,使失衡节点重新恢复平衡。代码如下所示:

/* 执行旋转操作,使该子树重新恢复平衡 */
func (t *aVLTree) rotate(node *TreeNode) *TreeNode {
    // 获取节点 node 的平衡因子
    // Go 推荐短变量,这里 bf 指代 t.balanceFactor
    bf := t.balanceFactor(node)
    // 左偏树
    if bf > 1 {
        if t.balanceFactor(node.Left) >= 0 {
            // 右旋
            return t.rightRotate(node)
        } else {
            // 先左旋后右旋
            node.Left = t.leftRotate(node.Left)
            return t.rightRotate(node)
        }
    }
    // 右偏树
    if bf < -1 {
        if t.balanceFactor(node.Right) <= 0 {
            // 左旋
            return t.leftRotate(node)
        } else {
            // 先右旋后左旋
            node.Right = t.rightRotate(node.Right)
            return t.leftRotate(node)
        }
    }
    // 平衡树,无须旋转,直接返回
    return node
}

AVL 树常用操作

插入节点

AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区别在于,在 AVL 树中插入节点后,从该节点到根节点的路径上可能会出现一系列失衡节点。因此,我们需要从这个节点开始,自底向上执行旋转操作,使所有失衡节点恢复平衡。代码如下所示:

/* 插入节点 */
func (t *aVLTree) insert(val int) {
    t.root = t.insertHelper(t.root, val)
}

/* 递归插入节点(辅助函数) */
func (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {
    if node == nil {
        return NewTreeNode(val)
    }
    /* 1. 查找插入位置并插入节点 */
    if val < node.Val.(int) {
        node.Left = t.insertHelper(node.Left, val)
    } else if val > node.Val.(int) {
        node.Right = t.insertHelper(node.Right, val)
    } else {
        // 重复节点不插入,直接返回
        return node
    }
    // 更新节点高度
    t.updateHeight(node)
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = t.rotate(node)
    // 返回子树的根节点
    return node
}

删除节点

类似地,在二叉搜索树的删除节点方法的基础上,需要从底至顶执行旋转操作,使所有失衡节点恢复平衡。代码如下所示:

/* 删除节点 */
func (t *aVLTree) remove(val int) {
    t.root = t.removeHelper(t.root, val)
}

/* 递归删除节点(辅助函数) */
func (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {
    if node == nil {
        return nil
    }
    /* 1. 查找节点并删除 */
    if val < node.Val.(int) {
        node.Left = t.removeHelper(node.Left, val)
    } else if val > node.Val.(int) {
        node.Right = t.removeHelper(node.Right, val)
    } else {
        if node.Left == nil || node.Right == nil {
            child := node.Left
            if node.Right != nil {
                child = node.Right
            }
            if child == nil {
                // 子节点数量 = 0 ,直接删除 node 并返回
                return nil
            } else {
                // 子节点数量 = 1 ,直接删除 node
                node = child
            }
        } else {
            // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
            temp := node.Right
            for temp.Left != nil {
                temp = temp.Left
            }
            node.Right = t.removeHelper(node.Right, temp.Val.(int))
            node.Val = temp.Val
        }
    }
    // 更新节点高度
    t.updateHeight(node)
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = t.rotate(node)
    // 返回子树的根节点
    return node
}

AVL 树典型应用

  • 组织和存储大型数据,适用于高频查找、低频增删的场景。
  • 用于构建数据库中的索引系统。
  • 红黑树在许多应用中比 AVL 树更受欢迎。这是因为红黑树的平衡条件相对宽松,在红黑树中插入与删除节点所需的旋转操作相对较少,其节点增删操作的平均效率更高。
posted @ 2024-02-21 14:38  Blue Mountain  阅读(59)  评论(0)    收藏  举报