动态规划理论

基本思想

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

分类

动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。
 
举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济ACM第1132题)等;
 
应用实例:
最短路径问题 ,项目管理,网络流优化等;
POJ动态规划题目列表:
容易:
  1018,1050,1083,1088,1125,1143,1157,1163,1178,1179,1189,1191,1208,1276,1322,1414,1456,1458,1609,1644,1664,1690,1699,1740,1742,1887,1926,1936,1952,1953,1958,1959,1962,1975,1989,2018,2029,2039,2063,2081,2082,2181,2184,2192,2231,2279,2329,2336,2346,2353,2355,2356,2385,2392,2424。
不易:
  1019,1037,1080,1112,1141,1170,1192,1239,1655,1695,1707,1733(区间减法加并查集),1737,1837,1850,1920(加强版汉罗塔),1934(全部最长公共子序列),1964(最大矩形面积,O(n*m)算法),2138,2151,2161,2178。
推荐:
  1015,1635,1636,1671,1682,1692,1704,1717,1722,1726,1732,1770,1821,1853,1949,2019,2127,2176,2228,2287,2342,2374,2378,2384,2411。 [1] 

 

posted @ 2020-04-20 00:30  关注我更新论文解读  阅读(122)  评论(0编辑  收藏  举报