Linux高并发web服务器开发——web服务器-3

在学习Linux高并发web服务器开发总结了笔记,并分享出来。有问题请及时联系博主:Alliswell_WP,转载请注明出处。

11_服务器开发-第03天(web服务器 - 3)

目录:
一、学习目标
二、 复习
三、strftime函数
四、libevent实现httpserver
五、线程池
1、线程池的原理
2、线程池各个函数分析
附—整体代码

 

一、学习目标

1、libevent实现httpserver

2、线程池

 

二、 复习

1、epoll服务器端代码

 

三、strftime函数

   

》使用:

char buf[1024];

strftime(buf, sizeof(buf), "%Y %b %d %H %M %S", st.st_mtime);//把st.st_mtime按双引号中格式 格式化到buf中。

》类似于QT中(QDateTime、QTime、QDate):如调用QDateTime后,然后toString("yy MM dd")把QDatetime转为特定格式

如获取本地时间:

QDateTime d(QDateTime::currentDateTime());
qDebug()<<d.toString("yy.MM.dd") ;   

 

四、libevent实现httpserver

》技巧:在vim中点击“F4”查看所有函数,在右侧垂直分屏显示,点击“Ctrl+w+w”切换分屏到右侧函数。

>main.c

#include <stdio.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <event2/bufferevent.h>
#include <event2/listener.h>
#include <event2/event.h>
#include "libevent_http.h"

int main(int argc, char **argv)
{
    if(argc < 3)
    {
        printf("./event_http port path\n");
        return -1;
    }
    if(chdir(argv[2]) < 0) {
        printf("dir is not exists: %s\n", argv[2]);
        perror("chdir err:");
        return -1;
    }
    
    struct event_base *base;
    struct evconnlistener *listener;
    struct event *signal_event;

    struct sockaddr_in sin;
    base = event_base_new();//创建事件处理框架
    if (!base)
    {
        fprintf(stderr, "Could not initialize libevent!\n");
        return 1;
    }

    memset(&sin, 0, sizeof(sin));
    sin.sin_family = AF_INET;
    sin.sin_port = htons(atoi(argv[1]));
    //服务器端创建2个套接字
    // 创建监听的套接字,绑定,监听,接受连接请求
    listener = evconnlistener_new_bind(base, listener_cb, (void *)base,
                    LEV_OPT_REUSEABLE | LEV_OPT_CLOSE_ON_FREE, -1,
                    (struct sockaddr*)&sin, sizeof(sin));
    if (!listener)
    {
        fprintf(stderr, "Could not create a listener!\n");
        return 1;
    }

    // 创建信号事件, 捕捉并处理
    signal_event = evsignal_new(base, SIGINT, signal_cb, (void *)base);
    if (!signal_event || event_add(signal_event, NULL)<0) 
    {
        fprintf(stderr, "Could not create/add a signal event!\n");
        return 1;
    }

    // 事件循环
    event_base_dispatch(base);

    evconnlistener_free(listener);
    event_free(signal_event);
    event_base_free(base);

    printf("done\n");

    return 0;
}
main.c

>libevent_http.h

#ifndef _LIBEVENT_HTTP_H
#define _LIBEVENT_HTTP_H

#include <event2/event.h>

void conn_eventcb(struct bufferevent *bev, short events, void *user_data);

void conn_readcb(struct bufferevent *bev, void *user_data);

const char *get_file_type(char *name);

int hexit(char c);

void listener_cb(struct evconnlistener *listener, evutil_socket_t fd,
                 struct sockaddr *sa, int socklen, void *user_data);

int response_http(struct bufferevent *bev, const char *method, char *path);

int send_dir(struct bufferevent *bev,const char *dirname);

int send_error(struct bufferevent *bev);

int send_file_to_http(const char *filename, struct bufferevent *bev);

int send_header(struct bufferevent *bev, int no, const char* desp, const char *type, long len);

void signal_cb(evutil_socket_t sig, short events, void *user_data);

void strdecode(char *to, char *from);

void strencode(char* to, size_t tosize, const char* from);

#endif
libevent_http.h

>libevent_http.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <sys/stat.h>
#include <string.h>
#include <dirent.h>
#include <time.h>
#include <signal.h>
#include <ctype.h>
#include <errno.h>
#include <event2/bufferevent.h>
#include <event2/buffer.h>
#include <event2/listener.h>
#include "libevent_http.h"

#define _HTTP_CLOSE_ "Connection: close\r\n"

int response_http(struct bufferevent *bev, const char *method, char *path)
{
    if(strcasecmp("GET", method) == 0){
        //get method ...
        strdecode(path, path);
        char *pf = &path[1];

        if(strcmp(path, "/") == 0 || strcmp(path, "/.") == 0)
        {
            pf="./";
        }

        printf("***** http Request Resource Path =  %s, pf = %s\n", path, pf);

        struct stat sb;
        if(stat(pf,&sb) < 0)
        {
            perror("open file err:");
            send_error(bev);
            return -1;
        }

        if(S_ISDIR(sb.st_mode))//处理目录
        {
            //应该显示目录列表
            send_header(bev, 200, "OK", get_file_type(".html"), -1);
            send_dir(bev, pf);
        }
        else //处理文件
        {
            send_header(bev, 200, "OK", get_file_type(pf), sb.st_size);
            send_file_to_http(pf, bev);
        }
    }

    return 0;
}

/*
     *charset=iso-8859-1    西欧的编码,说明网站采用的编码是英文;
     *charset=gb2312        说明网站采用的编码是简体中文;
     *charset=utf-8            代表世界通用的语言编码;
     *                        可以用到中文、韩文、日文等世界上所有语言编码上
     *charset=euc-kr        说明网站采用的编码是韩文;
     *charset=big5            说明网站采用的编码是繁体中文;
     *
     *以下是依据传递进来的文件名,使用后缀判断是何种文件类型
     *将对应的文件类型按照http定义的关键字发送回去
*/
const char *get_file_type(char *name)
{
    char* dot;

    dot = strrchr(name, '.');    //自右向左查找‘.’字符;如不存在返回NULL

    if (dot == (char*)0)
        return "text/plain; charset=utf-8";
    if (strcmp(dot, ".html") == 0 || strcmp(dot, ".htm") == 0)
        return "text/html; charset=utf-8";
    if (strcmp(dot, ".jpg") == 0 || strcmp(dot, ".jpeg") == 0)
        return "image/jpeg";
    if (strcmp(dot, ".gif") == 0)
        return "image/gif";
    if (strcmp(dot, ".png") == 0)
        return "image/png";
    if (strcmp(dot, ".css") == 0)
        return "text/css";
    if (strcmp(dot, ".au") == 0)
        return "audio/basic";
    if (strcmp( dot, ".wav") == 0)
        return "audio/wav";
    if (strcmp(dot, ".avi") == 0)
        return "video/x-msvideo";
    if (strcmp(dot, ".mov") == 0 || strcmp(dot, ".qt") == 0)
        return "video/quicktime";
    if (strcmp(dot, ".mpeg") == 0 || strcmp(dot, ".mpe") == 0)
        return "video/mpeg";
    if (strcmp(dot, ".vrml") == 0 || strcmp(dot, ".wrl") == 0)
        return "model/vrml";
    if (strcmp(dot, ".midi") == 0 || strcmp(dot, ".mid") == 0)
        return "audio/midi";
    if (strcmp(dot, ".mp3") == 0)
        return "audio/mpeg";
    if (strcmp(dot, ".ogg") == 0)
        return "application/ogg";
    if (strcmp(dot, ".pac") == 0)
        return "application/x-ns-proxy-autoconfig";

    return "text/plain; charset=utf-8";
}

int send_file_to_http(const char *filename, struct bufferevent *bev)
{
    int fd = open(filename, O_RDONLY);
    int ret = 0;
    char buf[4096] = {0};

    while(  (ret = read(fd, buf, sizeof(buf)) ) )
    {
        bufferevent_write(bev, buf, ret);
        memset(buf, 0, ret);
    }
    close(fd);
    return 0;
}

int send_header(struct bufferevent *bev, int no, const char* desp, const char *type, long len)
{
    char buf[256]={0};

    sprintf(buf, "HTTP/1.1 %d %s\r\n", no, desp);
    //HTTP/1.1 200 OK\r\n
    bufferevent_write(bev, buf, strlen(buf));
    // 文件类型
    sprintf(buf, "Content-Type:%s\r\n", type);
    bufferevent_write(bev, buf, strlen(buf));
    // 文件大小
    sprintf(buf, "Content-Length:%ld\r\n", len);
    bufferevent_write(bev, buf, strlen(buf));
    // Connection: close
    bufferevent_write(bev, _HTTP_CLOSE_, strlen(_HTTP_CLOSE_));
    //send \r\n
    bufferevent_write(bev, "\r\n", 2);

    return 0;
}

int send_error(struct bufferevent *bev)
{
    send_header(bev,404, "File Not Found", "text/html", -1);
    send_file_to_http("404.html", bev);
    return 0;
}

int send_dir(struct bufferevent *bev,const char *dirname)
{
    char encoded_name[1024];
    char path[1024];
    char timestr[64];
    struct stat sb;
    struct dirent **dirinfo;

    char buf[4096] = {0};
    sprintf(buf, "<html><head><meta charset=\"utf-8\"><title>%s</title></head>", dirname);
    sprintf(buf+strlen(buf), "<body><h1>当前目录:%s</h1><table>", dirname);
    //添加目录内容
    int num = scandir(dirname, &dirinfo, NULL, alphasort);
    for(int i=0; i<num; ++i)
    {
        // 编码
        strencode(encoded_name, sizeof(encoded_name), dirinfo[i]->d_name);

        sprintf(path, "%s%s", dirname, dirinfo[i]->d_name);
        printf("############# path = %s\n", path);
        if (lstat(path, &sb) < 0)
        {
            sprintf(buf+strlen(buf), 
                    "<tr><td><a href=\"%s\">%s</a></td></tr>\n", 
                    encoded_name, dirinfo[i]->d_name);
        }
        else
        {
            strftime(timestr, sizeof(timestr), 
                     "  %d  %b   %Y  %H:%M", localtime(&sb.st_mtime));
            if(S_ISDIR(sb.st_mode))
            {
                sprintf(buf+strlen(buf), 
                        "<tr><td><a href=\"%s/\">%s/</a></td><td>%s</td><td>%ld</td></tr>\n",
                        encoded_name, dirinfo[i]->d_name, timestr, sb.st_size);
            }
            else
            {
                sprintf(buf+strlen(buf), 
                        "<tr><td><a href=\"%s\">%s</a></td><td>%s</td><td>%ld</td></tr>\n", 
                        encoded_name, dirinfo[i]->d_name, timestr, sb.st_size);
            }
        }
        bufferevent_write(bev, buf, strlen(buf));
        memset(buf, 0, sizeof(buf));
    }
    sprintf(buf+strlen(buf), "</table></body></html>");
    bufferevent_write(bev, buf, strlen(buf));
    printf("################# Dir Read OK !!!!!!!!!!!!!!\n");

    return 0;
}

void conn_readcb(struct bufferevent *bev, void *user_data)
{
    printf("******************** begin call %s.........\n",__FUNCTION__);
    char buf[4096]={0};
    char method[50], path[4096], protocol[32];
    bufferevent_read(bev, buf, sizeof(buf));
    printf("buf[%s]\n", buf);
    sscanf(buf, "%[^ ] %[^ ] %[^ \r\n]", method, path, protocol);
    printf("method[%s], path[%s], protocol[%s]\n", method, path, protocol);
    if(strcasecmp(method, "GET") == 0)
    {
        response_http(bev, method, path);
    }
    printf("******************** end call %s.........\n", __FUNCTION__);
}

void conn_eventcb(struct bufferevent *bev, short events, void *user_data)
{
    printf("******************** begin call %s.........\n", __FUNCTION__);
    if (events & BEV_EVENT_EOF)
    {
        printf("Connection closed.\n");
    }
    else if (events & BEV_EVENT_ERROR)
    {
        printf("Got an error on the connection: %s\n",
               strerror(errno));
    }

    bufferevent_free(bev);
    printf("******************** end call %s.........\n", __FUNCTION__);
}

void signal_cb(evutil_socket_t sig, short events, void *user_data)
{
    struct event_base *base = user_data;
    struct timeval delay = { 1, 0 };

    printf("Caught an interrupt signal; exiting cleanly in one seconds.\n");
    event_base_loopexit(base, &delay);
}

//fd对应的是通信的文件描述符
void listener_cb(struct evconnlistener *listener, 
                 evutil_socket_t fd,struct sockaddr *sa, int socklen, void *user_data)
{
    printf("******************** begin call-------%s\n",__FUNCTION__);
    struct event_base *base = user_data;
    struct bufferevent *bev;
    printf("fd is %d\n",fd);
    bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE);
    if (!bev)
    {
        fprintf(stderr, "Error constructing bufferevent!");
        event_base_loopbreak(base);
        return;
    }
    bufferevent_flush(bev, EV_READ | EV_WRITE, BEV_NORMAL);
    bufferevent_setcb(bev, conn_readcb, NULL, conn_eventcb, NULL);
    bufferevent_enable(bev, EV_READ | EV_WRITE);

    printf("******************** end call-------%s\n",__FUNCTION__);
}

/*
 * 这里的内容是处理%20之类的东西!是"解码"过程。
 * %20 URL编码中的‘ ’(space)
 * %21 '!' %22 '"' %23 '#' %24 '$'
 * %25 '%' %26 '&' %27 ''' %28 '('......
 * 相关知识html中的‘ ’(space)是&nbsp
 */
void strdecode(char *to, char *from)
{
    for ( ; *from != '\0'; ++to, ++from)
    {
        if (from[0] == '%' && isxdigit(from[1]) && isxdigit(from[2]))
        {
            // 依次判断from中 %20 三个字符
            *to = hexit(from[1])*16 + hexit(from[2]);
            // 移过已经处理的两个字符(%21指针指向1),表达式3的++from还会再向后移一个字符
            from += 2;
        }
        else
        {
            *to = *from;
        }
    }
    *to = '\0';
}

//16进制数转化为10进制, return 0不会出现
int hexit(char c)
{
    if (c >= '0' && c <= '9')
        return c - '0';
    if (c >= 'a' && c <= 'f')
        return c - 'a' + 10;
    if (c >= 'A' && c <= 'F')
        return c - 'A' + 10;

    return 0;
}

// "编码",用作回写浏览器的时候,将除字母数字及/_.-~以外的字符转义后回写。
// strencode(encoded_name, sizeof(encoded_name), name);
void strencode(char* to, size_t tosize, const char* from)
{
    int tolen;

    for (tolen = 0; *from != '\0' && tolen + 4 < tosize; ++from)
    {
        if (isalnum(*from) || strchr("/_.-~", *from) != (char*)0)
        {
            *to = *from;
            ++to;
            ++tolen;
        }
        else
        {
            sprintf(to, "%%%02x", (int) *from & 0xff);
            to += 3;
            tolen += 3;
        }
    }
    *to = '\0';
}
libevent_http.c

>makefile

#makefile 

target = http_server
$(target):libevent_http.c main.c
    gcc -o $@ $^ -g -levent

.PHONY:clean
clean:
    -rm -f $(target)
makefile

 

五、线程池

1、线程池的原理

》线程池:

 

2、线程池各个函数分析:

(1)线程池结构体:struct threadpool_t

/* 描述线程池相关信息 */
struct threadpool_t {
    pthread_mutex_t lock;               /* 用于锁住本结构体 */    
    pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */
    pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */
    pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */

    pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */
    pthread_t adjust_tid;               /* 存管理线程tid */
    threadpool_task_t *task_queue;      /* 任务队列 */

    int min_thr_num;                    /* 线程池最小线程数 */
    int max_thr_num;                    /* 线程池最大线程数 */
    int live_thr_num;                   /* 当前存活线程个数 */
    int busy_thr_num;                   /* 忙状态线程个数 */
    int wait_exit_thr_num;              /* 要销毁的线程个数 */

    int queue_front;                    /* task_queue队头下标 */
    int queue_rear;                     /* task_queue队尾下标 */
    int queue_size;                     /* task_queue队中实际任务数 */
    int queue_max_size;                 /* task_queue队列可容纳任务数上限 */

    int shutdown;                       /* 标志位,线程池使用状态,true或false */
};
struct threadpool_t

(2)如何使用线程池:main主函数中调用threadpool_create、threadpool_add(包含回调process)、threadpool_destroy

/* 线程池中的线程,模拟处理业务 */
void *process(void *arg)
{
    printf("thread 0x%x working on task %d\n ",(unsigned int)pthread_self(),*(int *)arg);
    sleep(1);
    printf("task %d is end\n",*(int *)arg);

    return NULL;
}
int main(void)
{
    /*threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);*/

    threadpool_t *thp = threadpool_create(3,100,100);/*创建线程池,池里最小3个线程,最大100,队列最大100*/
    printf("pool inited");

    //int *num = (int *)malloc(sizeof(int)*20);
    int num[20], i;
    for (i = 0; i < 20; i++) {
        num[i]=i;
        printf("add task %d\n",i);
        threadpool_add(thp, process, (void*)&num[i]);     /* 向线程池中添加任务 */
    }
    sleep(10);                                          /* 等子线程完成任务 */
    threadpool_destroy(thp);

    return 0;
}
int main(void)

(3)初始化线程池的函数:threadpool_create

typedef struct {
    void *(*function)(void *);          /* 函数指针,回调函数 */
    void *arg;                          /* 上面函数的参数 */
} threadpool_task_t;  

threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
{
    int i;
    threadpool_t *pool = NULL;
    do {
        if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {  
            printf("malloc threadpool fail");
            break;/*跳出do while*/
        }

        pool->min_thr_num = min_thr_num;
        pool->max_thr_num = max_thr_num;
        pool->busy_thr_num = 0;
        pool->live_thr_num = min_thr_num;               /* 活着的线程数 初值=最小线程数 */
        pool->queue_size = 0;                           /* 有0个产品 */
        pool->queue_max_size = queue_max_size;
        pool->queue_front = 0;
        pool->queue_rear = 0;
        pool->shutdown = false;                         /* 不关闭线程池 */

        /* 根据最大线程上限数, 给工作线程数组开辟空间, 并清零 */
        pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); 
        if (pool->threads == NULL) {
            printf("malloc threads fail");
            break;
        }
        memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);

        /* 队列开辟空间 */
        pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
        if (pool->task_queue == NULL) {
            printf("malloc task_queue fail");
            break;
        }

        /* 初始化互斥琐、条件变量 */
        if (pthread_mutex_init(&(pool->lock), NULL) != 0
                || pthread_mutex_init(&(pool->thread_counter), NULL) != 0
                || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
                || pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
        {
            printf("init the lock or cond fail");
            break;
        }

        /* 启动 min_thr_num 个 work thread */
        for (i = 0; i < min_thr_num; i++) {
            pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);/*pool指向当前线程池*/
            printf("start thread 0x%x...\n", (unsigned int)pool->threads[i]);
        }
        pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);/* 启动管理者线程 */

        return pool;

    } while (0);

    threadpool_free(pool);      /* 前面代码调用失败时,释放poll存储空间 */

    return NULL;
}
threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)

(4)干活的线程的回调函数:threadpool_thread

/* 线程池中各个工作线程 */
void *threadpool_thread(void *threadpool)
{
    threadpool_t *pool = (threadpool_t *)threadpool;
    threadpool_task_t task;

    while (true) {
        /* Lock must be taken to wait on conditional variable */
        /*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/
        pthread_mutex_lock(&(pool->lock));

        /*queue_size == 0 说明没有任务,调 wait 阻塞在条件变量上, 若有任务,跳过该while*/
        while ((pool->queue_size == 0) && (!pool->shutdown)) {  
            printf("thread 0x%x is waiting\n", (unsigned int)pthread_self());
            pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));

            /*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/
            if (pool->wait_exit_thr_num > 0) {
                pool->wait_exit_thr_num--;

                /*如果线程池里线程个数大于最小值时可以结束当前线程*/
                if (pool->live_thr_num > pool->min_thr_num) {
                    printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
                    pool->live_thr_num--;
                    pthread_mutex_unlock(&(pool->lock));
                    pthread_exit(NULL);
                }
            }
        }

        /*如果指定了true,要关闭线程池里的每个线程,自行退出处理*/
        if (pool->shutdown) {
            pthread_mutex_unlock(&(pool->lock));
            printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
            pthread_exit(NULL);     /* 线程自行结束 */
        }

        /*从任务队列里获取任务, 是一个出队操作*/
        task.function = pool->task_queue[pool->queue_front].function;
        task.arg = pool->task_queue[pool->queue_front].arg;

        pool->queue_front = (pool->queue_front + 1) % pool->queue_max_size;       /* 出队,模拟环形队列 */
        pool->queue_size--;

        /*通知可以有新的任务添加进来*/
        pthread_cond_broadcast(&(pool->queue_not_full));

        /*任务取出后,立即将 线程池琐 释放*/
        pthread_mutex_unlock(&(pool->lock));

        /*执行任务*/ 
        printf("thread 0x%x start working\n", (unsigned int)pthread_self());
        pthread_mutex_lock(&(pool->thread_counter));                            /*忙状态线程数变量琐*/
        pool->busy_thr_num++;                                                   /*忙状态线程数+1*/
        pthread_mutex_unlock(&(pool->thread_counter));
        (*(task.function))(task.arg);                                           /*执行回调函数任务*/
        //task.function(task.arg);                                              /*执行回调函数任务*/

        /*任务结束处理*/ 
        printf("thread 0x%x end working\n", (unsigned int)pthread_self());
        pthread_mutex_lock(&(pool->thread_counter));
        pool->busy_thr_num--;                                       /*处理掉一个任务,忙状态数线程数-1*/
        pthread_mutex_unlock(&(pool->thread_counter));
    }

    pthread_exit(NULL);
}
void *threadpool_thread(void *threadpool)

(5)管理者线程回调函数:adjust_thread

/* 管理线程 */
void *adjust_thread(void *threadpool)
{
    int i;
    threadpool_t *pool = (threadpool_t *)threadpool;
    while (!pool->shutdown) {

        sleep(DEFAULT_TIME);                                    /*定时 对线程池管理*/

        pthread_mutex_lock(&(pool->lock));
        int queue_size = pool->queue_size;                      /* 关注 任务数 */
        int live_thr_num = pool->live_thr_num;                  /* 存活 线程数 */
        pthread_mutex_unlock(&(pool->lock));

        pthread_mutex_lock(&(pool->thread_counter));
        int busy_thr_num = pool->busy_thr_num;                  /* 忙着的线程数 */
        pthread_mutex_unlock(&(pool->thread_counter));

        /* 创建新线程 算法: 任务数大于最小线程池个数, 且存活的线程数少于最大线程个数时 如:30>=10 && 40<100*/
        if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
            pthread_mutex_lock(&(pool->lock));  
            int add = 0;

            /*一次增加 DEFAULT_THREAD 个线程*/
            for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
                    && pool->live_thr_num < pool->max_thr_num; i++) {
                if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
                    pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
                    add++;
                    pool->live_thr_num++;
                }
            }

            pthread_mutex_unlock(&(pool->lock));
        }

        /* 销毁多余的空闲线程 算法:忙线程X2 小于 存活的线程数 且 存活的线程数 大于 最小线程数时*/
        if ((busy_thr_num * 2) < live_thr_num  &&  live_thr_num > pool->min_thr_num) {

            /* 一次销毁DEFAULT_THREAD个线程, 隨機10個即可 */
            pthread_mutex_lock(&(pool->lock));
            pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;      /* 要销毁的线程数 设置为10 */
            pthread_mutex_unlock(&(pool->lock));

            for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
                /* 通知处在空闲状态的线程, 他们会自行终止*/
                pthread_cond_signal(&(pool->queue_not_empty));
            }
        }
    }

    return NULL;
}
void *adjust_thread(void *threadpool)

 

》附—整体代码如下:

>threadpool.c

  1 #include <stdlib.h>
  2 #include <pthread.h>
  3 #include <unistd.h>
  4 #include <assert.h>
  5 #include <stdio.h>
  6 #include <string.h>
  7 #include <signal.h>
  8 #include <errno.h>
  9 #include "threadpool.h"
 10 
 11 #define DEFAULT_TIME 10                 /*10s检测一次*/
 12 #define MIN_WAIT_TASK_NUM 10            /*如果queue_size > MIN_WAIT_TASK_NUM 添加新的线程到线程池*/ 
 13 #define DEFAULT_THREAD_VARY 10          /*每次创建和销毁线程的个数*/
 14 #define true 1
 15 #define false 0
 16 
 17 typedef struct {
 18     void *(*function)(void *);          /* 函数指针,回调函数 */
 19     void *arg;                          /* 上面函数的参数 */
 20 } threadpool_task_t;                    /* 各子线程任务结构体 */
 21 
 22 /* 描述线程池相关信息 */
 23 struct threadpool_t {
 24     pthread_mutex_t lock;               /* 用于锁住本结构体 */    
 25     pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */
 26     pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */
 27     pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */
 28 
 29     pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */
 30     pthread_t adjust_tid;               /* 存管理线程tid */
 31     threadpool_task_t *task_queue;      /* 任务队列 */
 32 
 33     int min_thr_num;                    /* 线程池最小线程数 */
 34     int max_thr_num;                    /* 线程池最大线程数 */
 35     int live_thr_num;                   /* 当前存活线程个数 */
 36     int busy_thr_num;                   /* 忙状态线程个数 */
 37     int wait_exit_thr_num;              /* 要销毁的线程个数 */
 38 
 39     int queue_front;                    /* task_queue队头下标 */
 40     int queue_rear;                     /* task_queue队尾下标 */
 41     int queue_size;                     /* task_queue队中实际任务数 */
 42     int queue_max_size;                 /* task_queue队列可容纳任务数上限 */
 43 
 44     int shutdown;                       /* 标志位,线程池使用状态,true或false */
 45 };
 46 
 47 /**
 48  * @function void *threadpool_thread(void *threadpool)
 49  * @desc the worker thread
 50  * @param threadpool the pool which own the thread
 51  */
 52 void *threadpool_thread(void *threadpool);
 53 
 54 /**
 55  * @function void *adjust_thread(void *threadpool);
 56  * @desc manager thread
 57  * @param threadpool the threadpool
 58  */
 59 void *adjust_thread(void *threadpool);
 60 
 61 /**
 62  * check a thread is alive
 63  */
 64 int is_thread_alive(pthread_t tid);
 65 int threadpool_free(threadpool_t *pool);
 66 
 67 threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
 68 {
 69     int i;
 70     threadpool_t *pool = NULL;
 71     do {
 72         if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {  
 73             printf("malloc threadpool fail");
 74             break;/*跳出do while*/
 75         }
 76 
 77         pool->min_thr_num = min_thr_num;
 78         pool->max_thr_num = max_thr_num;
 79         pool->busy_thr_num = 0;
 80         pool->live_thr_num = min_thr_num;               /* 活着的线程数 初值=最小线程数 */
 81         pool->queue_size = 0;                           /* 有0个产品 */
 82         pool->queue_max_size = queue_max_size;
 83         pool->queue_front = 0;
 84         pool->queue_rear = 0;
 85         pool->shutdown = false;                         /* 不关闭线程池 */
 86 
 87         /* 根据最大线程上限数, 给工作线程数组开辟空间, 并清零 */
 88         pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); 
 89         if (pool->threads == NULL) {
 90             printf("malloc threads fail");
 91             break;
 92         }
 93         memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);
 94 
 95         /* 队列开辟空间 */
 96         pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
 97         if (pool->task_queue == NULL) {
 98             printf("malloc task_queue fail");
 99             break;
100         }
101 
102         /* 初始化互斥琐、条件变量 */
103         if (pthread_mutex_init(&(pool->lock), NULL) != 0
104                 || pthread_mutex_init(&(pool->thread_counter), NULL) != 0
105                 || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
106                 || pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
107         {
108             printf("init the lock or cond fail");
109             break;
110         }
111 
112         /* 启动 min_thr_num 个 work thread */
113         for (i = 0; i < min_thr_num; i++) {
114             pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);/*pool指向当前线程池*/
115             printf("start thread 0x%x...\n", (unsigned int)pool->threads[i]);
116         }
117         pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);/* 启动管理者线程 */
118 
119         return pool;
120 
121     } while (0);
122 
123     threadpool_free(pool);      /* 前面代码调用失败时,释放poll存储空间 */
124 
125     return NULL;
126 }
127 
128 /* 向线程池中 添加一个任务 */
129 int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
130 {
131     pthread_mutex_lock(&(pool->lock));
132 
133     /* ==为真,队列已经满, 调wait阻塞 */
134     while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) {
135         pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));
136     }
137     if (pool->shutdown) {
138         pthread_mutex_unlock(&(pool->lock));
139     }
140 
141     /* 清空 工作线程 调用的回调函数 的参数arg */
142     if (pool->task_queue[pool->queue_rear].arg != NULL) {
143         free(pool->task_queue[pool->queue_rear].arg);
144         pool->task_queue[pool->queue_rear].arg = NULL;
145     }
146     /*添加任务到任务队列里*/
147     pool->task_queue[pool->queue_rear].function = function;
148     pool->task_queue[pool->queue_rear].arg = arg;
149     pool->queue_rear = (pool->queue_rear + 1) % pool->queue_max_size;       /* 队尾指针移动, 模拟环形 */
150     pool->queue_size++;
151 
152     /*添加完任务后,队列不为空,唤醒线程池中 等待处理任务的线程*/
153     pthread_cond_signal(&(pool->queue_not_empty));
154     pthread_mutex_unlock(&(pool->lock));
155 
156     return 0;
157 }
158 
159 /* 线程池中各个工作线程 */
160 void *threadpool_thread(void *threadpool)
161 {
162     threadpool_t *pool = (threadpool_t *)threadpool;
163     threadpool_task_t task;
164 
165     while (true) {
166         /* Lock must be taken to wait on conditional variable */
167         /*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/
168         pthread_mutex_lock(&(pool->lock));
169 
170         /*queue_size == 0 说明没有任务,调 wait 阻塞在条件变量上, 若有任务,跳过该while*/
171         while ((pool->queue_size == 0) && (!pool->shutdown)) {  
172             printf("thread 0x%x is waiting\n", (unsigned int)pthread_self());
173             pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));
174 
175             /*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/
176             if (pool->wait_exit_thr_num > 0) {
177                 pool->wait_exit_thr_num--;
178 
179                 /*如果线程池里线程个数大于最小值时可以结束当前线程*/
180                 if (pool->live_thr_num > pool->min_thr_num) {
181                     printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
182                     pool->live_thr_num--;
183                     pthread_mutex_unlock(&(pool->lock));
184                     pthread_exit(NULL);
185                 }
186             }
187         }
188 
189         /*如果指定了true,要关闭线程池里的每个线程,自行退出处理*/
190         if (pool->shutdown) {
191             pthread_mutex_unlock(&(pool->lock));
192             printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
193             pthread_exit(NULL);     /* 线程自行结束 */
194         }
195 
196         /*从任务队列里获取任务, 是一个出队操作*/
197         task.function = pool->task_queue[pool->queue_front].function;
198         task.arg = pool->task_queue[pool->queue_front].arg;
199 
200         pool->queue_front = (pool->queue_front + 1) % pool->queue_max_size;       /* 出队,模拟环形队列 */
201         pool->queue_size--;
202 
203         /*通知可以有新的任务添加进来*/
204         pthread_cond_broadcast(&(pool->queue_not_full));
205 
206         /*任务取出后,立即将 线程池琐 释放*/
207         pthread_mutex_unlock(&(pool->lock));
208 
209         /*执行任务*/ 
210         printf("thread 0x%x start working\n", (unsigned int)pthread_self());
211         pthread_mutex_lock(&(pool->thread_counter));                            /*忙状态线程数变量琐*/
212         pool->busy_thr_num++;                                                   /*忙状态线程数+1*/
213         pthread_mutex_unlock(&(pool->thread_counter));
214         (*(task.function))(task.arg);                                           /*执行回调函数任务*/
215         //task.function(task.arg);                                              /*执行回调函数任务*/
216 
217         /*任务结束处理*/ 
218         printf("thread 0x%x end working\n", (unsigned int)pthread_self());
219         pthread_mutex_lock(&(pool->thread_counter));
220         pool->busy_thr_num--;                                       /*处理掉一个任务,忙状态数线程数-1*/
221         pthread_mutex_unlock(&(pool->thread_counter));
222     }
223 
224     pthread_exit(NULL);
225 }
226 
227 /* 管理线程 */
228 void *adjust_thread(void *threadpool)
229 {
230     int i;
231     threadpool_t *pool = (threadpool_t *)threadpool;
232     while (!pool->shutdown) {
233 
234         sleep(DEFAULT_TIME);                                    /*定时 对线程池管理*/
235 
236         pthread_mutex_lock(&(pool->lock));
237         int queue_size = pool->queue_size;                      /* 关注 任务数 */
238         int live_thr_num = pool->live_thr_num;                  /* 存活 线程数 */
239         pthread_mutex_unlock(&(pool->lock));
240 
241         pthread_mutex_lock(&(pool->thread_counter));
242         int busy_thr_num = pool->busy_thr_num;                  /* 忙着的线程数 */
243         pthread_mutex_unlock(&(pool->thread_counter));
244 
245         /* 创建新线程 算法: 任务数大于最小线程池个数, 且存活的线程数少于最大线程个数时 如:30>=10 && 40<100*/
246         if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
247             pthread_mutex_lock(&(pool->lock));  
248             int add = 0;
249 
250             /*一次增加 DEFAULT_THREAD 个线程*/
251             for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
252                     && pool->live_thr_num < pool->max_thr_num; i++) {
253                 if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
254                     pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
255                     add++;
256                     pool->live_thr_num++;
257                 }
258             }
259 
260             pthread_mutex_unlock(&(pool->lock));
261         }
262 
263         /* 销毁多余的空闲线程 算法:忙线程X2 小于 存活的线程数 且 存活的线程数 大于 最小线程数时*/
264         if ((busy_thr_num * 2) < live_thr_num  &&  live_thr_num > pool->min_thr_num) {
265 
266             /* 一次销毁DEFAULT_THREAD个线程, 隨機10個即可 */
267             pthread_mutex_lock(&(pool->lock));
268             pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;      /* 要销毁的线程数 设置为10 */
269             pthread_mutex_unlock(&(pool->lock));
270 
271             for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
272                 /* 通知处在空闲状态的线程, 他们会自行终止*/
273                 pthread_cond_signal(&(pool->queue_not_empty));
274             }
275         }
276     }
277 
278     return NULL;
279 }
280 
281 int threadpool_destroy(threadpool_t *pool)
282 {
283     int i;
284     if (pool == NULL) {
285         return -1;
286     }
287     pool->shutdown = true;
288 
289     /*先销毁管理线程*/
290     pthread_join(pool->adjust_tid, NULL);
291 
292     for (i = 0; i < pool->live_thr_num; i++) {
293         /*通知所有的空闲线程*/
294         pthread_cond_broadcast(&(pool->queue_not_empty));
295     }
296     for (i = 0; i < pool->live_thr_num; i++) {
297         pthread_join(pool->threads[i], NULL);
298     }
299     threadpool_free(pool);
300 
301     return 0;
302 }
303 
304 int threadpool_free(threadpool_t *pool)
305 {
306     if (pool == NULL) {
307         return -1;
308     }
309 
310     if (pool->task_queue) {
311         free(pool->task_queue);
312     }
313     if (pool->threads) {
314         free(pool->threads);
315         pthread_mutex_lock(&(pool->lock));
316         pthread_mutex_destroy(&(pool->lock));
317         pthread_mutex_lock(&(pool->thread_counter));
318         pthread_mutex_destroy(&(pool->thread_counter));
319         pthread_cond_destroy(&(pool->queue_not_empty));
320         pthread_cond_destroy(&(pool->queue_not_full));
321     }
322     free(pool);
323     pool = NULL;
324 
325     return 0;
326 }
327 
328 int threadpool_all_threadnum(threadpool_t *pool)
329 {
330     int all_threadnum = -1;
331     pthread_mutex_lock(&(pool->lock));
332     all_threadnum = pool->live_thr_num;
333     pthread_mutex_unlock(&(pool->lock));
334     return all_threadnum;
335 }
336 
337 int threadpool_busy_threadnum(threadpool_t *pool)
338 {
339     int busy_threadnum = -1;
340     pthread_mutex_lock(&(pool->thread_counter));
341     busy_threadnum = pool->busy_thr_num;
342     pthread_mutex_unlock(&(pool->thread_counter));
343     return busy_threadnum;
344 }
345 
346 int is_thread_alive(pthread_t tid)
347 {
348     int kill_rc = pthread_kill(tid, 0);     //发0号信号,测试线程是否存活
349     if (kill_rc == ESRCH) {
350         return false;
351     }
352 
353     return true;
354 }
355 
356 /*测试*/ 
357 
358 #if 1
359 /* 线程池中的线程,模拟处理业务 */
360 void *process(void *arg)
361 {
362     printf("thread 0x%x working on task %d\n ",(unsigned int)pthread_self(),*(int *)arg);
363     sleep(1);
364     printf("task %d is end\n",*(int *)arg);
365 
366     return NULL;
367 }
368 int main(void)
369 {
370     /*threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);*/
371 
372     threadpool_t *thp = threadpool_create(3,100,100);/*创建线程池,池里最小3个线程,最大100,队列最大100*/
373     printf("pool inited");
374 
375     //int *num = (int *)malloc(sizeof(int)*20);
376     int num[20], i;
377     for (i = 0; i < 20; i++) {
378         num[i]=i;
379         printf("add task %d\n",i);
380         threadpool_add(thp, process, (void*)&num[i]);     /* 向线程池中添加任务 */
381     }
382     sleep(10);                                          /* 等子线程完成任务 */
383     threadpool_destroy(thp);
384 
385     return 0;
386 }
387 
388 #endif

>threadpool.h

 1 #ifndef __THREADPOOL_H_
 2 #define __THREADPOOL_H_
 3 
 4 typedef struct threadpool_t threadpool_t;
 5 
 6 /**
 7  * @function threadpool_create
 8  * @descCreates a threadpool_t object.
 9  * @param thr_num  thread num
10  * @param max_thr_num  max thread size
11  * @param queue_max_size   size of the queue.
12  * @return a newly created thread pool or NULL
13  */
14 threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);
15 
16 /**
17  * @function threadpool_add
18  * @desc add a new task in the queue of a thread pool
19  * @param pool     Thread pool to which add the task.
20  * @param function Pointer to the function that will perform the task.
21  * @param argument Argument to be passed to the function.
22  * @return 0 if all goes well,else -1
23  */
24 int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg);
25 
26 /**
27  * @function threadpool_destroy
28  * @desc Stops and destroys a thread pool.
29  * @param pool  Thread pool to destroy.
30  * @return 0 if destory success else -1
31  */
32 int threadpool_destroy(threadpool_t *pool);
33 
34 /**
35  * @desc get the thread num
36  * @pool pool threadpool
37  * @return # of the thread
38  */
39 int threadpool_all_threadnum(threadpool_t *pool);
40 
41 /**
42  * desc get the busy thread num
43  * @param pool threadpool
44  * return # of the busy thread
45  */
46 int threadpool_busy_threadnum(threadpool_t *pool);
47 
48 #endif

>makefile

 1 src = $(wildcard *.c)
 2 targets = $(patsubst %.c, %, $(src))
 3 
 4 CC = gcc
 5 CFLAGS = -lpthread -Wall -g 
 6 
 7 all:$(targets)
 8 
 9 $(targets):%:%.c
10     $(CC) $< -o $@ $(CFLAGS)
11 
12 .PHONY:clean all
13 clean:
14     -rm -rf $(targets) 

 

 

在学习Linux高并发web服务器开发总结了笔记,并分享出来。有问题请及时联系博主:Alliswell_WP,转载请注明出处。

posted on 2020-07-14 21:46  Alliswell_WP  阅读(317)  评论(0编辑  收藏  举报

导航