题解 CF1549E The Three Little Pigs

组合计数题,赛场上还读错了题。
不过不读错也做不出。

\(\sum_{i=1}^{3n} {i \choose x}\)

\(f_{x, m} = \sum_{i=0}^{n-1} {3i+m \choose x}\),则答案是 \(f_{x, 0} + {3n \choose x}\)

考虑 \(f\) 怎么求。
由杨辉三角可得

\[\sum_{i=0}^{n-1} {3i \choose x} + \sum_{i=0}^{n-1} {3i \choose x-1} = \sum_{i=0}^{n-1} {3i+1 \choose x} \]

\[\begin{aligned} &f_{x, 1} = f_{x, 0} + f_{x-1, 0} \\ \text{同理}\kern{2em} & f_{x, 2} = f_{x, 1} + f_{x-1, 1} \end{aligned} \]

然后由冰球棍恒等式(大概是这么叫的)

\[{n \choose k+1} = \sum_{i=0}^{n-k} {n-i \choose k} \]

\[\sum_{i=0}^{n-1} {3i \choose x} + \sum_{i=0}^{n-1} {3i+1 \choose x} + \sum_{i=0}^{n-1} {3i+2 \choose x} = \sum_{i=0}^{3n-1} {i \choose x} = {3n \choose x+1} \]

\[f_{x, 0} + f_{x, 1} + f_{x, 2} = {3n \choose x+1} \]

这样有了三个等式解三个未知数就可以求解了。
先设 \(x, y, z\) 分别是 \(f_{x, 0}, f_{x, 1}, f_{x, 2}\)\(a, b\) 分别是 \(f_{x-1, 0},, f_{x-1}{1}\)

那么

\[\begin{cases} x + y + z = {3n \choose x+1} \\ y = x + a \\ z = y + b \end{cases} \]

\(y\) 代入到三式再代入到一式得

\[3x + 2a + b = {3n \choose x+1} \]

这样 dp 方程就圆满了。

posted @ 2021-08-02 11:28  Acfboy  阅读(71)  评论(0)    收藏  举报