POJ 2976(01分数划分+二分)

                                                                                              Dropping tests
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12221   Accepted: 4273

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

题意:给你n对 a[i] b[i] 去掉k对  使得 sigms(a)/sigma(b) 最大
后来才知道这是一道板子题
(∑ai*xi)/(∑bi*xi)求极值问题
我们可以化简 (∑ai*xi)-L*(∑bi*xi)=0;
F(L)=(∑ai*xi)-L*(∑bi*xi)  由此可以得到这个一个单调递减的函数 随着L的增大而减小、
假设我们要求的最大值L为 l;
只有当F(L)无限接近0时  L=l;
对于我们如何来确定这个解
比如我们选k对  我们只有判断 这前K大的(ai-L*b[i])和是不是<0;因为这是单调递减的,F(L)<0--> L>l  F(L)>0--> L
而我们这个题是删除k对  所以只有n-k就可以了
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cctype>
 5 #include<cmath>
 6 #include<cstring>
 7 #include<map>
 8 #include<stack>
 9 #include<set>
10 #include<vector>
11 #include<algorithm>
12 #include<string.h>
13 typedef long long ll;
14 typedef unsigned long long LL;
15 using namespace std;
16 const int INF=0x3f3f3f3f;
17 const double eps=0.0000000001;
18 const int N=100000+10;
19 int n,k;
20 int a[N],b[N];
21 double ans[N];
22 int judge(double x){
23     double sum=0;
24     for(int i=0;i<n;i++){
25         ans[i]=a[i]-x*b[i];
26     }
27     sort(ans,ans+n);
28     for(int i=n-1;i>=n-k;i--)sum=sum+ans[i];
29     if(sum>0)return 1;
30     else
31         return 0;
32 }
33 int main(){
34     while(scanf("%d%d",&n,&k)!=EOF){
35         if(n==0&&k==0)break;
36         double maxx=0.0;
37         for(int i=0;i<n;i++)scanf("%d",&a[i]);
38         for(int i=0;i<n;i++)scanf("%d",&b[i]);
39         k=n-k;
40         double low=0;
41         double high=1.0;
42         double mid;
43         while(low+eps<high){
44             mid=(low+high)/2;
45             if(judge(mid)){
46                 low=mid;
47             }
48             else{
49                high=mid;
50             }
51         }
52         printf("%.0f\n",mid*100);
53     }
54 }

 

 
所以我们二分 L(0,1)
 
 

posted on 2017-05-25 00:39  见字如面  阅读(225)  评论(0编辑  收藏  举报

导航