【计算几何模板】求两个圆的交点

问题描述:

给两个相交的圆,第一个圆的圆心为\((x_1, \, y_1)\),半径为\(r_1\),第二个圆的圆心为\((x_2, \, y_2)\),半径为\(r_2\),求两个圆的交点。

问题分析:

《训练指南》上求两圆交点的模板用了atan2acos等库函数,精度损失比较严重。
下面介绍一种精度损失较小的做法:
原文地址

首先回顾一下圆的两种表示方法:

  • 圆的标准方程:\((x-x_0)^2+(y-y_0)^2=r^2\)
  • 圆的参数方程:\(\left\{\begin{matrix} x=x_0+r\cdot cos\theta \\ y=y_0+r\cdot sin\theta \end{matrix}\right.\)

将第一个圆的参数方程带入第二个圆的标准方程:
\((x_1+r_1cos\theta-x_2)^2+(y_1+r_1sin\theta-y_2)^2=r_2^2\)
展开后得到:
\(2r_1(x_1-x_2)cos\theta+2r_1(y_1-y_2)sin\theta=r_2^2-r_1^2-(x_1-x_2)^2-(y_1-y_2)^2\)
令:
\(a=2r_1(x_1-x_2)\)
\(b=2r_1(y_1-y_2)\)
\(c=r_2^2-r_1^2-(x_1-x_2)^2-(y_1-y_2)^2\)
原式变为:
\(a cos\theta+b sin\theta=c\)
\(cos\theta=x, \, sin\theta=\sqrt{1-x^2}\),关于\(sin\theta\)的正负后面再判断。
代入方程,得到,\(ax+b\sqrt{1-x^2}=c\)
移项再两边平方,\((ax-c)^2=b^2(1-x^2)\)
整理得,\((a^2+b^2)x^2-2acx+c^2-b^2=0\)
下面就是解一元二次方程了。

\(sin\theta\)\(cos\theta\)代回到第一个圆的参数方程,能得到交点的坐标。
如果该点不在第二个圆上,说明\(sin\theta\)是个负数,还需要对这个交点稍作调整。
还有一种特殊情况就是,如果已经确定有两个不同的交点,但解出来的\(cos\theta\)值只有一个。
说明对应的\(sin\theta\)值必然一正一负。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>

typedef long double LD;

const LD eps = 1e-10;

int dcmp(LD x) {
    if(fabs(x) < eps) return 0;
    return x < 0 ? -1 : 1;
}

LD sqr(LD x) { return x * x; }

struct Point
{
    LD x, y;
    Point(LD x = 0, LD y = 0):x(x), y(y) {}
    void read() { cin >> x >> y; }
};

Point operator - (const Point& A, const Point& B) {
    return Point(A.x - B.x, A.y - B.y);
}

bool operator == (const Point& A, const Point& B) {
    return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.x) == 0;
}

LD Dot(const Point& A, const Point& B) {
    return A.x * B.x + A.y * B.y;
}

LD Length(const Point& A) { return sqrt(Dot(A, A)); }

struct Circle
{
    Point c;
    LD r;
    Circle() {}
    Circle(Point c, LD r):c(c), r(r) {}
};

int getCircleIntersection(Circle C1, Circle C2) {
    LD &r1 = C1.r, &r2 = C2.r;
    LD &x1 = C1.c.x, &x2 = C2.c.x, &y1 = C1.c.y, &y2 = C2.c.y;
    LD d = Length(C1.c - C2.c);
    if(dcmp(fabs(r1-r2) - d) > 0) return -1;
    if(dcmp(r1 + r2 - d) < 0) return 0;
    LD d2 = Dot(C1.c - C2.c, C1.c - C2.c);
    LD a = r1*(x1-x2)*2, b = r1*(y1-y2)*2, c = r2*r2-r1*r1-d*d;
    LD p = a*a+b*b, q = -a*c*2, r = c*c-b*b;

    LD cosa, sina, cosb, sinb;
    //One Intersection
    if(dcmp(d - (r1 + r2)) == 0 || dcmp(d - fabs(r1 - r2)) == 0) {
        cosa = -q / p / 2;
        sina = sqrt(1 - sqr(cosa));
        Point p(x1 + C1.r * cosa, y1 + C1.r * sina);
        if(!OnCircle(p, C2)) p.y = y1 - C1.r * sina;
        inter.push_back(p);
        return 1;
    }
    //Two Intersections
    LD delta = sqrt(q * q - p * r * 4);
    cosa = (delta - q) / p / 2;
    cosb = (-delta - q) / p / 2;
    sina = sqrt(1 - sqr(cosa));
    sinb = sqrt(1 - sqr(cosb));
    Point p1(x1 + C1.r * cosa, y1 + C1.r * sina);
    Point p2(x1 + C1.r * cosb, y1 + C1.r * sinb);
    if(!OnCircle(p1, C2)) p1.y = y1 - C1.r * sina;
    if(!OnCircle(p2, C2)) p2.y = y1 - C1.r * sinb;
    if(p1 == p2)  p1.y = y1 - C1.r * sina;
    inter.push_back(p1);
    inter.push_back(p2);
    return 2;
}
posted @ 2016-01-04 12:11  AOQNRMGYXLMV  阅读(...)  评论(...编辑  收藏