斐波那契数列

来源:https://www.bilibili.com/video/BV1XV41127JW

1、什么是斐波那契数列?

斐波那契数列就是从第3项开始,每一项都等于前两项之和。

例子:1,1,2,3,5,8,13,21,34,55,89 ......

2、记忆点

1)所有数据相加

\[S_n = a_{n+2} - a_2 \]

2)奇、偶下标相加

\[奇数:a_1+a_3+a_5+a_7+\cdots+a_{2n-1}=S_{2n-2}+a_1=a_{2n}-a_2+a_1\\ 偶数:a_2 + a_4 + a_6 + a_8 + \cdots + a_{2n} = S_{2n-1} - a_1 + a_2 = a_{2n+1} - a_1 \]

3)任意连续三项

\[a_{n+1}a_{n-1}-a_n^2 = (-1)^n \]

4)3.1

\[a_n^2 = a_{n+1}a_n- a_na_{n-1} \]

5)余数列的周期性

​ 被2除的与数列周期为3: 1,1,0....

​ 被4除的与数列周期为6: 1,1,2,3,1,0....

​ 被3除的与数列周期为8: 1,1,2,0,2,2,1,0....

3、常用的性质

性质一

\[S_n = a_{n+2} - a_2 \]

推导:

\[\begin{cases} &a_{n+2}=a_{n+1} + a_n \\ &a_{n+1}=a_n + a_{n-1}\\ &a_{a_n}=a_{n-1} + a_{n-2}\\ &\cdots\\ &a_4=a_3+a_2\\ &a_3=a_2+a_1\\ \end{cases} \]

将上述的式子相加就会得到:

\[a_{n+2}= (a_n+a_{n-1}+a_{n-2}+\cdots+a_2+a_1)+a_2\\ ↓\\ a_{n+2} = S_n + a_2\\ ↓\\ S_n = a_{n+2} - a_2 \]

性质二
奇数项之和:

\[a_1+a_3+a_5+a_7+\cdots+a_{2n-1}=S_{2n-2}+a_1=a_{2n}-a_2+a_1\\ 当a1=a2=1时↓\\ a_1+a_3+a_5+a_7+\cdots+a_{2n-1}=S_{2n-2}+a_1=a_{2n} \]

将除了第一项的数据进行拆分

\[a_1+[(a_1+a_2)+(a_3+a_4)+(a_5+a_6)+\cdots+(a_{2n-3}+a_{2n-2})]=a_1+S_{2n-2}\\ ↓↓↓S_n=a_{n+2}-a_2(性质一的结论)↓↓↓\\ a_1+S_{2n-2}=a_1+[a_{2n}-a_2] \]

偶数项之和:

\[a_2 + a_4 + a_6 + a_8 + \cdots + a_{2n} = S_{2n-1} - a_1 + a_2 = a_{2n+1} - a_1\\ 当a1=a2=1时↓\\ a_2 + a_4 + a_6 + a_8 + \cdots + a_{2n} = S_{2n-1} = a_{2n+1} - 1 \]

将除了第一项的数据进行拆分

\[a_2+[(a_2+a_3)+(a_4+a_5)+(a_6+a_7)+\cdots+(a_{2n-2}+a_{2n-1})]+a_1-a_1 = a_2+S_{2n-1}-a_1\\ ↓↓↓S_n=a_{n+2}-a_2(性质一的结论)↓↓↓\\ a_2+S_{2n-1}-a_1 =a_{2n+1} - a_1 \]

性质三

\[a_{n+1}a_{n-1}-a_n^2 = (-1)^n \]

性质四

\[a_n^2 = a_{n+1}a_n- a_na_{n-1} \]

推导

\[a_{n+1}a_n- a_na_{n-1}\\ =(a_n+a_{n-1})a_n - a_na_{n-1}\\ =a_n^2+ a_na_{n-1}- a_na_{n-1}\\ =a_n^2 \]

性质五

​ 被2除的与数列周期为3: 1,1,0....

​ 被4除的与数列周期为6: 1,1,2,3,1,0....

​ 被3除的与数列周期为8: 1,1,2,0,2,2,1,0....

posted @ 2022-05-28 14:02  九折丶水平  阅读(776)  评论(0编辑  收藏  举报