对任意四边形椅子贴地证明的尝试

经过和学长的讨论,这个证明方法存在问题

投影变换是非线性变换,在旋转后变换的图形和原先变换图形不一定一样,即原先是直角梯形,旋转了45度后可能不是直角梯形了,本方法为了得到梯形无法避免非线性变换,无法保证旋转后的图形形状,无法用来证明

背景:

在连续地面上,尝试证明一个四条腿的梯形椅子可以完全贴地,已知总有三条腿可以完全贴地

方案:

1.旋转:没有对称性
2.空间几何:找两个可以贴地的正方形椅子,椅面不一定平行
3.图像变换:透视投影可以,将二维坐标扩展为三维齐次坐标,但需注意部分变换函数并不连续。

原理:

记正方形上点为 \((x,y)\) ,任意四边形上对应点为 \((x',y')\) ,变换矩阵为一3$\times$3矩阵

1.将二维点提升到齐次坐标:

\[[x,y]->[x,y,1] \]

2.乘以变换矩阵H,得到中间齐次坐标:

\[(u,v,w)=(x,y,1)\begin{pmatrix} h_{11} & h_{12} &h_{13} \\ h_{21} & h_{22} &h_{23} \\ h_{31} & h_{32} &h_{33} \\ \end{pmatrix}\]

3.展开上面矩阵乘法后,将三维齐次坐标化为二维,得到变换后的四边形的顶点坐标:

\[x'=\frac{u}{w}=\frac{h_{11}x+h_{21}y+h_{31}}{h_{13}x+h_{23}y+h_{33}} \]

\[y'=\frac{v}{w}=\frac{h_{12}x+h_{22}y+h_{32}}{h_{13}x+h_{23}y+h_{33}} \]

模型求解

空间四点共面等价于 \(\left|\begin{array} 11 & x_{1} &y_{1}&z_{1} \\ 1 & x_{2} &y_{2}&z_{2} \\ 1 & x_{3} &y_{3}&z_{3} \\ 1 & x_{4} &y_{4}&z_{4} \\ \end{array}\right|=0\)
引入正方形判断函数

\[\Delta(\theta)=\left|\begin{array} 11 & acos(\theta) &asin(\theta)&f(acos(\theta),asin(\theta)) \\ 1 & asin(\theta) &-acos(\theta)&f(asin(\theta),-acos(\theta)) \\ 1 & -acos(\theta) &-asin(\theta)&f(-acos(\theta),-asin(\theta)) \\ 1 & -asin(\theta) &acos(\theta)&f(-asin(\theta),acos(\theta)) \\ \end{array}\right|\]

对正方形的顶点施加投影变换,得到变换后四边形的判断函数:

\[\Omega(\theta)=\left|\begin{array} 11 & \frac{h_{11}acos(\theta)+h_{21}asin(\theta)+h_{31}}{h_{13}acos(\theta)+h_{23}asin(\theta)+h_{33}}& \frac{h_{12}acos(\theta)+h_{22}asin(\theta)+h_{32}}{h_{13}acos(\theta)+h_{23}asin(\theta)+h_{33}}& f(\omega_{12},\omega_{13}) \\ 1 & \frac{h_{11}asin(\theta)-h_{21}acos(\theta)+h_{31}} {h_{13}asin(\theta)-h_{23}acos(\theta)+h_{33}}& \frac{h_{12}asin(\theta)-h_{22}acos(\theta)+h_{32}} {h_{13}asin(\theta)-h_{23}acos(\theta)+h_{33}}& f(\omega_{22},\omega_{23}) \\ 1 & \frac{-h_{11}acos(\theta)-h_{21}asin(\theta)+h_{31}} {-h_{13}acos(\theta)-h_{23}asin(\theta)+h_{33}}& \frac{-h_{12}acos(\theta)-h_{22}asin(\theta)+h_{32}} {-h_{13}acos(\theta)-h_{23}asin(\theta)+h_{33}}& f(\omega_{32},\omega_{33}) \\ 1 & \frac{-h_{11}asin(\theta)+h_{21}acos(\theta)+h_{31}} {-h_{13}asin(\theta)+h_{23}acos(\theta)+h_{33}}& \frac{-h_{12}asin(\theta)+h_{22}acos(\theta)+h_{32}} {-h_{13}asin(\theta)+h_{23}acos(\theta)+h_{33}}& f(\omega_{42},\omega_{43}) \\ \end{array}\right|\]

分别带入 \(\theta=0,\theta=\frac{\pi}{2}\)

\[\Omega(0)=\left|\begin{array} 11 & \frac{ah_{21}+h_{31}}{ah_{23}+h_{33}} & \frac{ah_{22}+h_{32}}{ah_{23}+h_{33}}& f(\omega_{12},\omega_{13}) \\ 1 & \frac{ah_{11}+h_{31}}{ah_{13}+h_{33}} & \frac{ah_{12}+h_{32}}{ah_{13}+h_{33}}& f(\omega_{22},\omega_{23}) \\ 1 & \frac{-ah_{21}+h_{31}}{-ah_{23}+h_{33}} & \frac{-ah_{22}+h_{32}}{-ah_{23}+h_{33}} & f(\omega_{32},\omega_{33})\\ 1 & \frac{-ah_{12}+h_{32}}{-ah_{13}+h_{33}} & \frac{-ah_{12}+h_{32}}{-ah_{13}+h_{33}} & f(\omega_{42},\omega_{43})\\ \end{array}\right|\]

\[\Omega(\frac{\pi}{2})=\left|\begin{array} 11 & \frac{-ah_{12}+h_{32}}{-ah_{13}+h_{33}} & \frac{-ah_{12}+h_{32}}{-ah_{13}+h_{33}} & f(\omega_{12},\omega_{13}) \\ 1 & \frac{ah_{11}+h_{31}}{ah_{13}+h_{33}} & \frac{ah_{12}+h_{32}}{ah_{13}+h_{33}}& f(\omega_{22},\omega_{23}) \\ 1 & \frac{-ah_{21}+h_{31}}{-ah_{23}+h_{33}} & \frac{-ah_{22}+h_{32}}{-ah_{23}+h_{33}} & f(\omega_{32},\omega_{33})\\ 1 &\frac{ah_{21}+h_{31}}{ah_{23}+h_{33}} & \frac{ah_{22}+h_{32}}{ah_{23}+h_{33}}& f(\omega_{42},\omega_{43})\\ \end{array}\right|\]

可以观察到$$\Omega(0)=-\Omega(\frac{\pi}{2})$$
连续函数相乘的结果任然是连续函数。
想要 \(\Omega\) 函数连续,行列式中每一项分母需不为零,有如下条件

\[\left\{ \begin{array}{**lr**} ah_{23}+h_{33}\neq0& \\ ah_{13}+h_{33}\neq0\\ -ah_{23}+h_{33}\neq0& \\ -ah_{13}+h_{33}\neq0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} h_{13}\neq-\frac{1}{a}& \\ h_{13}\neq\frac{1}{a}\\ h_{23}\neq-\frac{1}{a} \\ h_{23}\neq\frac{1}{a} \end{array} \right. \]

\[————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— \]

直角梯形的h参数

记正方形 \(a,b,c,d\) 四点,分别和直角梯形 \(a',b',c',d'\) 对应

\[\left\{ \begin{array}{**lr**} a:(0,1) \\ b:(1,1)\\ c:(1,0) \\ d:(0,0) \end{array} \right. \rightarrow \left\{ \begin{array}{**lr**} a':(0,h) \\ b':(a,h)\\ c':(b,0) \\ d':(0,0) \end{array} \right. \]

记投影变换矩阵

\[H=\begin{pmatrix} h_{11} & h_{12} &h_{13} \\ h_{21} & h_{22} &h_{23} \\ h_{31} & h_{32} &h_{33} \\ \end{pmatrix}\]

由透视变换,构造透视变换方程

\[\begin{pmatrix} h_{11} & h_{12} &h_{13} \\ h_{21} & h_{22} &h_{23} \\ h_{31} & h_{32} &h_{33} \\ \end{pmatrix}\begin{pmatrix} x \\ y \\ 1 \\ \end{pmatrix}=\begin{pmatrix} xh_{11}+yh_{12}+h_{13} \\ xh_{21}+yh_{22}+h_{23} \\ xh_{31}+yh_{32}+h_{33} \\ \end{pmatrix}=\begin{pmatrix} kx' \\ ky' \\ k \\ \end{pmatrix}=k\begin{pmatrix} x' \\ y' \\ 1 \\ \end{pmatrix}\]

对于k这一参数,是为了描述变换矩阵的缩放能力,按照投影变换坐标的计算,其实并不影响点的二维坐标,只会改变齐次坐标。

对于A点

\[\begin{pmatrix} 0\cdot h_{11}+1\cdot h_{12}+1\cdot h_{13} \\ 0\cdot h_{21}+1\cdot h_{22}+1\cdot h_{23} \\ 0\cdot h_{31}+1\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{A}\begin{pmatrix} 0 \\ a \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{12}+h_{13}=ek_{A} \\ h_{22}+h_{23}=fk_{A}\\ h_{32}+h_{33}=k_{A} \\ \end{array} \right. \]

对于B点

\[\begin{pmatrix} 1\cdot h_{11}+1\cdot h_{12}+1\cdot h_{13} \\ 1\cdot h_{21}+1\cdot h_{22}+1\cdot h_{23} \\ 1\cdot h_{31}+1\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{B}\begin{pmatrix} a \\ h \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{11}+h_{12}+h_{13}=ak_{B} \\ h_{21}+h_{22}+h_{23}=hk_{B}\\ h_{31}+h_{32}+h_{33}=k_{B} \\ \end{array} \right. \]

对于C点

\[\begin{pmatrix} 1\cdot h_{11}+0\cdot h_{12}+1\cdot h_{13} \\ 1\cdot h_{21}+0\cdot h_{22}+1\cdot h_{23} \\ 1\cdot h_{31}+0\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{C}\begin{pmatrix} b \\ 0 \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{11}+h_{13}=bk_{C} \\ h_{21}+h_{23}=0\\ h_{31}+h_{33}=k_{C} \\ \end{array} \right. \]

对于D点

\[\begin{pmatrix} 0\cdot h_{11}+0\cdot h_{12}+1\cdot h_{13} \\ 0\cdot h_{21}+0\cdot h_{22}+1\cdot h_{23} \\ 0\cdot h_{31}+0\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{D}\begin{pmatrix} 0 \\ 0 \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{13}=0 \\ h_{23}=0\\ h_{33}=k_{D} \\ \end{array} \right. \]

汇总

\[\left\{ \begin{array}{**lr**} h_{12}+h_{13}=0 \\ h_{22}+h_{23}=hk_{A}\\ h_{32}+h_{33}=k_{A} \\ \end{array} \right. \left\{ \begin{array}{**lr**} h_{11}+h_{12}+h_{13}=ak_{B} \\ h_{21}+h_{22}+h_{23}=hk_{B}\\ h_{31}+h_{32}+h_{33}=k_{B} \\ \end{array} \right. \left\{ \begin{array}{**lr**} h_{11}+h_{13}=bk_{C} \\ h_{21}+h_{23}=0\\ h_{31}+h_{33}=k_{C} \\ \end{array} \right. \left\{ \begin{array}{**lr**} h_{13}=0 \\ h_{23}=0\\ h_{33}=k_{D} \\ \end{array} \right. \]

可以得到

\[\begin{array}{l} h_{11}=ak_{B}=bk_{C}& h_{12}=0 & h_{13}=0 \\ h_{21}=hk_{B}& h_{22}=hk_{A} & h_{23}=0\\ h_{31}=k_{C}-k_{D}&h_{32}=k_{A}-k_{D} & h_{33}=k_{D} \\ \end{array} \]

满足上文函数连续的定义, \(\frac{1}{a}\neq0\)
再来看看这四个点的方程,d与d'点构造的方程得到 \(h_{33}\) 是一个自由变量,\(h_{13},h_{23}\)等于零,使得判断方程连续。进一步来说,变换后,只要有一点位于原点,变换后的矩阵均满足:

\[\left\{ \begin{array}{**lr**} h_{13}=0 \\ h_{23}=0\\ h_{33}=k_{D} \\ \end{array} \right. \]

进一步推导

\[\left\{ \begin{array}{**lr**} a:(0,1) \\ b:(1,1) \\ c:(1,0) \\ d:(0,0) \end{array} \right. \rightarrow \left\{ \begin{array}{**lr**} a':(e,f) \\ b':(g,h)\\ c':(i,j) \\ d':(0,0) \end{array} \right. \]

对于A点

\[\begin{pmatrix} 0\cdot h_{11}+1\cdot h_{12}+1\cdot h_{13} \\ 0\cdot h_{21}+1\cdot h_{22}+1\cdot h_{23} \\ 0\cdot h_{31}+1\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{A}\begin{pmatrix} e \\ f \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{12}+h_{13}=ek_{A} \\ h_{22}+h_{23}=fk_{A}\\ h_{32}+h_{33}=k_{A} \\ \end{array} \right. \]

对于B点

\[\begin{pmatrix} 1\cdot h_{11}+1\cdot h_{12}+1\cdot h_{13} \\ 1\cdot h_{21}+1\cdot h_{22}+1\cdot h_{23} \\ 1\cdot h_{31}+1\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{B}\begin{pmatrix} g \\ h \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{11}+h_{12}+h_{13}=gk_{B} \\ h_{21}+h_{22}+h_{23}=hk_{B}\\ h_{31}+h_{32}+h_{33}=k_{B} \\ \end{array} \right. \]

对于C点

\[\begin{pmatrix} 1\cdot h_{11}+0\cdot h_{12}+1\cdot h_{13} \\ 1\cdot h_{21}+0\cdot h_{22}+1\cdot h_{23} \\ 1\cdot h_{31}+0\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{C}\begin{pmatrix} i \\ j \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{11}+h_{13}=ik_{C} \\ h_{21}+h_{23}=jk_{C}\\ h_{31}+h_{33}=k_{C} \\ \end{array} \right. \]

对于D点

\[\begin{pmatrix} 0\cdot h_{11}+0\cdot h_{12}+1\cdot h_{13} \\ 0\cdot h_{21}+0\cdot h_{22}+1\cdot h_{23} \\ 0\cdot h_{31}+0\cdot h_{32}+1\cdot h_{33} \\ \end{pmatrix}=k_{D}\begin{pmatrix} 0 \\ 0 \\ 1 \\ \end{pmatrix}\]

易知

\[\left\{ \begin{array}{**lr**} h_{13}=0 \\ h_{23}=0\\ h_{33}=k_{D} \\ \end{array} \right. \]

汇总

\[\left\{ \begin{array}{**lr**} h_{12}+h_{13}=ek_{A} \\ h_{22}+h_{23}=fk_{A}\\ h_{32}+h_{33}=k_{A} \\ \end{array} \right.\left\{ \begin{array}{**lr**} h_{11}+h_{12}+h_{13}=gk_{B} \\ h_{21}+h_{22}+h_{23}=hk_{B}\\ h_{31}+h_{32}+h_{33}=k_{B} \\ \end{array} \right. \left\{ \begin{array}{**lr**} h_{11}+h_{13}=ik_{C} \\ h_{21}+h_{23}=jk_{C}\\ h_{31}+h_{33}=k_{C} \\ \end{array} \right. \]

可以得到

\[\begin{array}{l} h_{11}=gk_{B}-ek_{A}& h_{12}=ek_{A} & h_{13}=0 \\ h_{21}=jk_{C} & h_{22}=fk_{A} & h_{23}=0\\ h_{31}=k_{C}-k_{D}=k_{B}-k_{A} &h_{32}=k_{A}-k_{D} & h_{33}=k_{D} \\ \end{array} \]

同样符合先前提到的条件

posted @ 2025-09-09 08:26  黑色vitality  阅读(26)  评论(0)    收藏  举报