摘要:
[注意:考虑到这个和SVM重复很多,所以会一笔带过/省略一些] softmax和SVM只是线性分类器分类结果的评判不同, 完全依靠打分最大来评判结果, 误差就是希望结果尽可能接近正确分类值远大于其他值. 我们将打分结果按照指数权重正则化为和为1的向量: 而这个值希望尽可能接近1, 也就是-log接近 阅读全文
posted @ 2023-04-08 22:10
360MEMZ
阅读(182)
评论(0)
推荐(0)
摘要:
SVM的相关概念 首先如课程所说, 本质上线性分类器就是对一个图片向量到打分向量的映射,所以就是ωx+b=S. 对于最基本的二分类SVM, 其利用超平面划分了点集,结果非黑即白, 但是现在我们利用的W可以认为是好几个超平面在一起,得到的不再是一个结果,而是打分向量,如果只需要打分判断正确类别就行,是 阅读全文
posted @ 2023-04-08 20:51
360MEMZ
阅读(198)
评论(0)
推荐(0)

浙公网安备 33010602011771号