查找

0PTA得分截图

1.本周学习总结(0-4分)

1.1 总结查找内容

1.1.1查找的性能指标->ASL(Average Search Length)

1.1.1.1ASL的功能

  • 称为关键字的平均比较次数,也称平均搜索长度
  • 用一个确定的数值来判断相应查找方法的查找效率(ASL越小,表明效率越高;ASL越大,表明效率越低)

1.1.1.2ASL的计算

  • 查找失败的ASL
    查找失败目标的查找次数总和/查找失败目标的个数
  • 查找成功的ASL
    查找成功目标的查找次数综合/查找成功目标的个数

1.1.2静态查找(仅作查询检索操作的查找表)

1.1.2.1顺序查找

相关概念
假设有一个表格按顺序存放数据,此时想要在表中查找数据X,方法为:从表的起点按顺序遍历表,直到找到X或者遍历完毕都未找到
举例

  • 存在下图数组存储关键字
  • 查找关键字2和8
  • 代码
int Search(int a[],int n,int X)
{
    int i;
    
    for(i=0;i<n;i++)       //从头到尾扫描关键字表
    {
        if(a[i]==X)
        {
            return i;   //成功则返回逻辑序号
        }
    }
    
    return -1;    //标志查找失败
}
  • 计算成功与不成功的ASL
    成功的ASL:关键字5需要查找1次,关键字7需要查找2次,以此类推...
    ASL=1+2+3+4+5+6+7/7=4
    不成功的ASL:不管关键字为何值,只要其查找失败,都需要遍历关键字表,查找次数为数组长度
    ASL=7
    注:对于同一个顺序表来说,查找的ASL不变(成功的ASL为(n+1)/2,失败的ASL为n)

1.1.2.2二分查找

相关概念
举例

  • 存在一组关键字

  • 在其中查找关键字25,流程如下

  • 代码(分为递归法和非递归法)
    非递归法

int Search(int a[],int n,keytype X)
{
    int low=0;
    int high=n-1;
    int mid;
    
    while(low<=high)
    {
        mid=(low+high)/2;
        if(a[mid].key<X)
        {
            low=mid+1;
        }
        else if(a[mid].key>X)
        {
            high=mid-1;
        }
        else
        {
            return mid;    //查找成功返回逻辑序号
        }
    }
    
    return -1;    //标志着查找失败
}

递归法

int Search(int a[],keytype X,int high,int low)
{
    int mid;
    
    if(low<=high)
    {
        mid=(low+high)/2;
        if(a[mid].key>X)
        {
            return Search(a[],X,mid-1,low);
        }
        else if(a[mid].key<X)
        {
            return Search(a[],X,low,mid+1);
        }
        else
        {
            return mid;
        }
    }
    else
    {
        return -1;
    }
}

1.1.3动态查找(进行查找操作后,可插入不存在结果或删除存在结果)

1.1.3.1二叉搜索树

定义

  • 其可以为空树

  • 若其不为空树,则满足以下条件:
    (1)非空左子树的所有键值小于其根结点的键值。
    (2)非空右子树的所有键值大于其根结点的键值。
    (3)左、右子树都是二叉搜索树。
    构建:

  • 构建时步骤
    (1)若二叉搜索树为空,则将待插入数据X作为根结点
    (2)若待插入数据X和当前结点关键字相同,则无需操作
    (3)若待插入数据X大于当前结点的关键字,则插入其右子树
    (4)若待插入数据X小于当前结点的关键字,则插入其左子树

  • 存在以下一组数据

  • 流程图



  • 代码

void Insert(BinTree &BST,KeyType X)
{
    if(BST==BULL)                 //插入位置在叶节点
    {
        BST=new BinNode;
        BST->key=X;
        BST->Left=BST->right=NULL;
    }
    else
    {
        if(X>BST->key)
        {
            Insert(BST->Right,X);
        }
        else if(X<BST->key)
        {
            Insert(BST->Left,X);
        }
        else              //已有关键字
        {
        }
    }
}
  • 不同的次序生成不同的二叉搜索树
    将上述的数据从小到大排序,生成二叉搜索树

删除:

  • 删除时步骤
    (1)被删节点为叶子节点
    直接删除,置为NULL
    (2)被删节点只有左子树或者右子树
    用其左孩子代替或者右孩子代替
    (3)被删节点同时存在左右子树
    有两种解决方案:其一是用其左子树中的最大关键字代替,并且将该最大关键字本身删除;
    其二是用其右子树中最小关键字代替,并且将该最小关键字本身删除;
  • 代码(删除函数)
BinTree Delete(BinTree BST, ElementType X)
{
    BinTree temp;

    if (BST == NULL)
    {
        printf("Not Found\n");    }
    else
    {
        if (X < BST->Data)
        {
            BST->Left = Delete(BST->Left, X);
        }
        else if (X > BST->Data)
        {
            BST->Right = Delete(BST->Right, X);
        }
        else          //找到所删点;
        {
            if (BST->Left && BST->Right)     //存在左右孩子
            {
                BST->Data = FindMax(BST->Left)->Data;
                BST->Left = Delete(BST->Left, BST->Data);
            }
            else           
            {
                if (!BST->Left && !BST->Right)///左右都无
                {
                    free(BST);
                }
                else
                {
                    if (BST->Left != NULL && BST->Right == NULL)   //有左无右
                    {
                        temp = BST;
                        BST = BST->Left;
                        free(temp);
                    } 
                    else         //有右无左
                    {
                        temp = BST;
                        BST = BST->Right;
                        free(temp);
                    }
                }
            }
        }
    }
    
    return BST;
}

查找

  • 相关知识点
    首先从二叉搜索树的根结点开始进行查找,若所找关键字大于当前扫描的树节点关键字,则进入其右孩子,进行比较,若所找关键字小于当前扫描的树节点关键字,则进入其左孩子,进行比较,直到扫描到关键字和所查关键字相同。若在找到关键字之前,扫描到NULL,则说明查找失败,书中无此关键字。
  • 代码
bool Find(BinTree BST, int X)
{
	if (BST == NULL)     //说明未找到,即查找失败
	{
		return false;
	}
	else
	{
		if (X > BST->Data)      //进入右孩子
		{
			return Find(BST->Right, X);
		}
		else if(X<BST->Data)     //进入左孩子
		{
			return Find(BST->Left, X);
		}
		else        //找到
		{
			return true;
		}
	}
}

ASL的计算

1.1.4AVL树(平衡二叉树)

1.1.4.1AVL的定义

  • 存在意义

    如上图:
    (1)对于一组相同的数据,构建的二叉搜索树不同,会导致其ASL不同,即查找效率不同。
    (2)进一步观察发现,构建的二叉搜索树形态上越接近完全二叉树,其ASL越低,查找效率越高。
  • 相关定义
    AVL树(平衡二叉树)任何一个节点的左右子树的深度只差只能取-1,0,1,即0<=|Hr-Hl|<=1。

1.1.4.2四种调整

  • 四种调整图示
    LL调整

RR调整

LR调整

RL调整

1.1.5B树

1.1.5.1B-树和B+树定义

1.1.5.2B-树的插入

1.1.5.3B-树的删除

1.1.6散列查找

1.1.6.1哈希表

1.1.6.2哈希链

1.2学习体会

2.PTA题目介绍(0--6分)

2.1 题目1(2分)

2.1.1 该题的设计思路

题面分析。分析题面数据如何表达。
文字+图方式介绍解法。如完全二叉树特点、二叉搜索树特点,如何结合解决本题。。。。
计算代码的时间复杂度。

2.1.2 该题的伪代码

文字+代码简要介绍本题思路

2.1.3 PTA提交列表

提交列表截图。并介绍代码编写中碰到问题及解决方法。

2.1.4 本题设计的知识点

1,2,3罗列。。。

2.2 题目2(2分)

2.2.1

2.2.2

2.2.3

2.2.4

2.3 题目3(2分)

2.3.1

2.3.2

2.3.3

2.3.4

posted @ 2020-05-24 22:07  囫囵吞了个枣  阅读(139)  评论(0编辑  收藏  举报