1.请分析SparkSQL出现的原因,并简述SparkSQL的起源与发展。
Hadoop刚开始出来的时候,使用的是hadoop自带的分布式计算系统MapReduce,但是MapReduce的使用难度较大,所以就开发了Hive,Hive编程用的是类SQL的HQL的语句,这样编程的难度就大大的降低了,Hive的运行原理就是将HQL语句经过语法解析、逻辑计划、物理计划转化成MapReduce程序执行。当Spark出来以后,Spark团队也开发了一个Shark,就是在Spark集群上安装一个Hive的集群,执行引擎是Hive转化成Mapreduce的执行引擎,这样的框架就是Hive on Spark,但是这样是有局限性的,因为Shark的版本升级是依赖Hive的版本的,所有2014年7月1日spark团队就将Shark转给Hive进行管理,Spark团队开发了一个SparkSQL,这个计算框架就是将Hive on Spark的将SQL语句转化为Spark RDD的执行引擎换成自己团队从新开发的执行引擎。
2. 简述RDD 和DataFrame的联系与区别?
联系
都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利;
都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action才会运算;
都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出;
三者都有partition的概念;
三者有许多共同的函数,如filter,排序等。
区别
RDD是分布式的java对象的集合,但是对象内部结构对于RDD而言却是不可知的。
DataFrame是一种以RDD为基础的分布式数据集,提供了详细的结构信息,相当于关系数据库中的一张表。
3.DataFrame的创建
spark.read.text(url)

spark.read.json(url)

spark.read.format("text").load("people.txt")

spark.read.format("json").load("people.json")

描述从不同文件类型生成DataFrame的区别。
区别:RDD是直接输出对象,DataFrame是以对象里面的的详细结构进行输出
4. PySpark-DataFrame各种常用操作
基于df的操作:
打印数据 df.show()默认打印前20条数据

打印概要 df.printSchema()

查询总行数 df.count()

df.head(3)#list类型,list中每个元素是Row类

输出全部行 df.collect() #list类型,list中每个元素是Row类

查询概况 df.describe().show()

取列 df[‘name’], df.name, df[1]

选择 df.select() 每个人的年龄+1

筛选 df.filter() 20岁以上的人员信息

筛选年龄为空的人员信息

分组df.groupBy() 统计每个年龄的人数

排序df.sortBy() 按年龄进行排序

基于spark.sql的操作:
创建临时表虚拟表 df.registerTempTable('people')
spark.sql执行SQL语句 spark.sql('select name from people').show()

5. Pyspark中DataFrame与pandas中DataFrame
分别从文件创建DataFrame

pandas中DataFrame转换为Pyspark中DataFrame

Pyspark中DataFrame转换为pandas中DataFrame

从创建与操作上,比较两者的异同
| Pandas | Pyspark | |
| 创建上 | 从 spark_df 转换:pandas_df = spark_df.toPandas() |
从 pandas_df 转换:spark_df = SQLContext.createDataFrame(pandas_df),另外,createDataFrame 支持从 list 转换 spark_df,其中 list 元素可以为 tuple,dict,rdd |
| list,dict,ndarray 转换 |
已有的 RDDs 转换 |
|
| CSV文件数据集读取 |
结构化数据文件读取 |
|
| HDF5 读取 |
JSON 数据集读取 |
|
| EXCEL 读取 |
Hive 表读取 |
|
|
外部数据库读取 |
||
| 操作上 | Series 结构,属于 Pandas DataFrame 结构 |
Row 结构,属于 Spark DataFrame 结构 |
| Series 结构,属于 Pandas DataFrame 结构 |
Column 结构,属于 Spark DataFrame 结构,如:DataFrame[name: string] |
|
| df 输出具体内容 |
df 不输出具体内容,输出具体内容用 show 方法 |
|
| 没有树结构输出形式 |
以树的形式打印概要:df.printSchema() |
|
| pandas_df = spark_df.toPandas() |
spark_df = sqlContext.createDataFrame(pandas_df) |
6.从RDD转换得到DataFrame
6.1 利用反射机制推断RDD模式
创建RDD sc.textFile(url).map(),读文件,分割数据项
每个RDD元素转换成 Row
由Row-RDD转换到DataFrame

6.2 使用编程方式定义RDD模式

#下面生成“表头”

#下面生成“表中的记录”

#下面把“表头”和“表中的记录”拼装在一起

注册 一个 临 时 表供下 面查询使用

7. DataFrame的保存
df.write.text(dir)
df.write.json(dri)
df.write.format("text").save(dir)
df.write.format("json").save(dir)


浙公网安备 33010602011771号