最大子列求和问题
算法一:暴力遍历法
#include <stdio.h>
int MaxSubseqSum2( int A[], int N )
{ int ThisSum, MaxSum = 0;
int i, j;
for( i = 0; i < N; i++ ) { /* i是子列左端位置 */
for( j = i; j < N; j++ ) { /* j是子列右端位置 */
ThisSum = 0;
for( k = i; k <= j; k++)
ThisSum += A[k];
if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
MaxSum = ThisSum; /* 则更新结果 */
} /* j循环结束 */
} /* i循环结束 */
return MaxSum;
}
int main() {
int k;
scanf("%d", &k);
int a[10000000] = {0};
for (int i = 0 ; i < k; i++)
scanf("%d", &a[i]);
printf("%d\n", MaxSubseqSum2(a, k));
return 0;
}
此时算法一的时间复杂度为O(N^3)
算法二:算法一的部分优化
#include <stdio.h>
int MaxSubseqSum2( int A[], int N )
{ int ThisSum, MaxSum = 0;
int i, j;
for( i = 0; i < N; i++ ) { /* i是子列左端位置 */
ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和 */
for( j = i; j < N; j++ ) { /* j是子列右端位置 */
ThisSum += A[j]; /*对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可*/
if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
MaxSum = ThisSum; /* 则更新结果 */
} /* j循环结束 */
} /* i循环结束 */
return MaxSum;
}
int main() {
int k;
scanf("%d", &k);
int a[10000000] = {0};
for (int i = 0 ; i < k; i++)
scanf("%d", &a[i]);
printf("%d\n", MaxSubseqSum2(a, k));
return 0;
}
此时算法二的时间复杂度为O(N^2)
算法三:分而治之——递归
#include <stdio.h>
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
int main() {
int k;
scanf("%d", &k);
int a[10000000] = {0};
for (int i = 0 ; i < k; i++)
scanf("%d", &a[i]);
printf("%d\n", MaxSubseqSum3(a, k));
return 0;
}
此时算法三的时间复杂度为O(N*logN)
算法四:在线处理法
#include <stdio.h>
using namespace std;
int MaxSubseqSum(int *a, int k);
int main(){
int k = 0;
scanf("%d", &k);
int a[1000000]={0};
for (int i = 0; i < k; i++)
scanf("%d", &a[i]);
printf("%d\n", MaxSubseqSum(a, k));
return 0;
}
int MaxSubseqSum(int *a, int k){
int MaxSum, ThisSum;
MaxSum = ThisSum = 0;
for (int i = 0; i < k; i++) {
ThisSum += a[i];
if (ThisSum > MaxSum)
MaxSum = ThisSum;
else if (ThisSum < 0)
ThisSum = 0;
}
return MaxSum;
}
此时算法四的时间复杂度为O(N)

浙公网安备 33010602011771号