关联分析--FP-growth算法

关联分析

概述:一种在大规模数据集中寻找有趣关系的任务。

这种关系形式:频繁项集或者关联规则

频繁项集:经常出现在一块的物品集合。
关联规则:暗示物品之间可能存在很强的关系。

对频繁的度量: 支持度和可信度

支持度:数据集中包含该项集的记录所占的比例

可信度或者置信度: 针对诸如:{尿布}->{葡萄酒}的关联规则来定义,这条规则的可信度被定义为:

“支持度({尿布, 葡萄酒})/支持度({尿布})”

支持度和可信度是用来量化关联分析是否成功的方法

经典发现频繁项集算法:Apriori、FP-growth算法

FP-growth算法(Frequent Pattern growth)

优点: 一般快于Apriori

缺点: 实现比较困难,在某些数据集上性能会下降

适用数据类型:标称型数据

FP-growth算法工作流程:

首先构建FP树,利用它来挖掘频繁项集。构建FP树需要对原始树扫描两遍,第一遍对所有元素项出现

次数进行统计,如果某个元素不是频繁的,那么包含该元素的超集也不是频繁的,第二遍扫描只需考虑

频繁元素。

构建FP树

代码实践:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""
FP-growth算法
"""


class treeNode:
    """
    FP树节点
    """
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None  # 链接相似元素项
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print(f'{" " * ind}{self.name}\t{self.count}')
        for child in self.children.values():
            child.disp(ind+1)


def createTree(dataSet, minSup=1):
    """
    创建FP树
    :param dataSet:
    :param minSup:
    :return:
    """
    headerTable = {}
    # 遍历数据集,并统计每个元素项出现频度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
    # 移除不满足最小支持度的元素项
    headerTableTemp = headerTable.copy()
    for k in headerTableTemp.keys():
        if headerTableTemp[k] < minSup:
            headerTable.__delitem__(k)

    freqItemSet = set(headerTable.keys())
    # 如果没有满足要求元素项,则退出
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]
    # 创建包含空集合的根节点
    retTree = treeNode('Null Set', 1, None)
    for tranSet, count in dataSet.items():
        # 根据全局频率对每个事物中的元素进行排序
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
            # 使用排序后的频率项集对树进行填充
            updateTree(orderedItems, retTree, headerTable, count)

    return retTree, headerTable  # return tree and header table


def updateTree(items, inTree, headerTable, count):
    """
    更新FP树
    :param items:
    :param inTree:
    :param headerTable:
    :param count:
    :return:
    """
    if items[0] in inTree.children:
        inTree.children[items[0]].inc(count)
    else:
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    if len(items) > 1:
        # 对剩下元素项迭代,调用updateTree
        updateTree(items[1::], inTree.children[items[0]], headerTable, count)

def updateHeader(nodeToTest, targetNode):
    """
    更新表头
    :param nodeToTest:
    :param targetNode:
    :return:
    """
    while nodeToTest.nodeLink != None:
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

def loadSimpDat():
    simpDat = [
        ['r', 'z', 'h', 'j', 'p'],
        ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
        ['z'],
        ['r', 'x', 'n', 'o', 's'],
        ['y', 'r', 'x', 'z', 'q', 't', 'p'],
        ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']
    ]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict

def ascendTree(leafNode, prefixPath):
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)


def findPrefixPath(basePat, treeNode):
    """
    查找以某个节点为终点的路径前缀
    :param basePat:
    :param treeNode:
    :return:
    """
    condPats = {}
    while treeNode != None:
        prefixPath = []
        ascendTree(treeNode, prefixPath)
        if len(prefixPath) > 1:
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        treeNode = treeNode.nodeLink
    return condPats

def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[0])]  # (sort header table)
    for basePat in bigL:
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        freqItemList.append(newFreqSet)
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
        myCondTree, myHead = createTree(condPattBases, minSup)
        if myHead != None:
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)


if __name__ == '__main__':
    simpDat = loadSimpDat()
    initSet = createInitSet(simpDat)
    myFPtree, myHeaderTab = createTree(initSet, 3)
    freqItems = []
    mineTree(myFPtree, myHeaderTab, 3, set([]), freqItems)
    print(freqItems)
posted @ 2022-09-15 16:36  酷酷的排球  阅读(239)  评论(0编辑  收藏  举报