1 import torch
2 import numpy as np
3 import torchvision
4 import torch.nn as nn
5
6 from torchvision import datasets,transforms,models
7 import matplotlib.pyplot as plt
8 import time
9 import os
10 import copy
11 print("Torchvision Version:",torchvision.__version__)
12
13 data_dir="./hymenoptera_data"
14 batch_size=32
15 input_size=224
16 model_name="resnet"
17 num_classes=2
18 num_epochs=15
19 feature_extract=True
20 data_transforms={
21 "train":transforms.Compose([
22 transforms.RandomResizedCrop(input_size),
23 transforms.RandomHorizontalFlip(),
24 transforms.ToTensor(),
25 transforms.Normalize([0.482,0.456,0.406],[0.229,0.224,0.225])
26 ]),
27 "val":transforms.Compose([
28
29 transforms.RandomResizedCrop(input_size),
30 transforms.RandomHorizontalFlip(),
31 transforms.ToTensor(),
32 transforms.Normalize([0.482, 0.456, 0.406], [0.229, 0.224, 0.225])
33 ]),
34 }
35 image_datasets={x:datasets.ImageFolder(os.path.join(data_dir,x),data_transforms[x])
36 for x in ["train",'val']}
37 dataloader_dict={x:torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size,
38 shuffle=True)for x in ['train','val']}
39 device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
40 inputs,labels=next(iter(dataloader_dict["train"]))
41 #print(inputs.shape)#一个batch
42 #print(labels)
43
44
45 #加载resent模型并修改全连接层
46 def set_parameter_requires_grad(model,feature_extract):
47 if feature_extract:
48 for param in model.parameters():
49 param.requires_grad=False
50
51 def initialize_model(model_name,num_classes,feature_extract,use_pretrained=True):
52 if model_name=="resnet":
53 model_ft=models.resnet18(pretrained=use_pretrained)
54 set_parameter_requires_grad(model_ft,feature_extract)
55 num_ftrs=model_ft.fc.in_features
56 model_ft.fc=nn.Linear(num_ftrs,num_classes)
57 input_size=224
58 else:
59 print("model not implemented")
60 return None,None
61
62 return model_ft,input_size
63 model_ft,input_size=initialize_model(model_name,num_classes,feature_extract,use_pretrained=True)
64 #print(model_ft)
65 print('-'*200)
66
67
68 def train_model(model,dataloaders,loss_fn,optimizer,num_epochs):
69 best_model_wts=copy.deepcopy(model.state_dict)
70 best_acc=0.
71 val_acc_history=[]
72 for epoch in range(num_epochs):
73 for phase in ["train","val"]:
74 running_loss=0.
75 running_corrects=0.
76 if phase=="train":
77 model.train()
78 else:
79 model.eval()
80
81 for inputs,labels in dataloaders[phase]:
82 inputs,labels=inputs.to(device),labels.to(device)
83
84 with torch.autograd.set_grad_enabled(phase=="train"):
85 outputs=model(inputs)
86 loss=loss_fn(outputs,labels)
87 preds=outputs.argmax(dim=1)
88 if phase=="train":
89 optimizer.zero_grad()
90 loss.backward()
91 optimizer.step()
92 running_loss+=loss.item()*inputs.size(0)
93 running_corrects+=torch.sum(preds.view(-1)==labels.view(-1)).item()
94
95 epoch_loss=running_loss/len(dataloaders[phase].dataset)
96 epoch_acc=running_corrects/len(dataloaders[phase].dataset)
97
98 print("Phase{} loss:{}, acc:{}".format(phase,epoch_loss,epoch_acc))
99
100 if phase=="val" and epoch_acc>best_acc:
101 best_acc=epoch_acc
102 best_model_wts=copy.deepcopy(model.state_dict())
103 if phase=="val":
104 val_acc_history.append(epoch_acc)
105 model.load_state_dict(best_model_wts)
106 return model,val_acc_history
107
108 model_ft=model_ft.to(device)
109 optimizer=torch.optim.SGD(filter(lambda p: p.requires_grad,model_ft.parameters()),
110 lr=0.001,momentum=0.9)
111 loss_fn=nn.CrossEntropyLoss()
112 print("feature extraction: 我们不再改变训练模型的参数,而是只更新我们改变过的部分模型参数。"
113 "我们之所以叫它feature extraction是因为我们把预训练的CNN模型当做一个特征提取模型,利用提取出来的特征做来完成我们的训练任务。")
114 _,ohist=train_model(model_ft,dataloader_dict,loss_fn,optimizer,num_epochs=num_epochs)
115
116 print("-"*200)
117
118
119 model_scratch,_=initialize_model(model_name,num_classes,feature_extract=False,use_pretrained=False)
120 model_scratch=model_ft.to(device)
121 optimizer=torch.optim.SGD(filter(lambda p: p.requires_grad,model_ft.parameters()),
122 lr=0.001,momentum=0.9)
123 loss_fn=nn.CrossEntropyLoss()
124 print("fine tuning: 从一个预训练模型开始,我们改变一些模型的架构,然后继续训练整个模型的参数。")
125 _,scratch_ohist=train_model(model_ft,dataloader_dict,loss_fn,optimizer,num_epochs=num_epochs)
126
127 plt.title("Accuracy vs. Training Epoch")
128 plt.xlabel("Training Epoch")
129 plt.ylabel("Accuracy")
130 plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
131 plt.plot(range(1,num_epochs+1),scratch_ohist,label="No_pretrained")
132 plt.ylim((0,1.))
133 plt.xticks(np.arange(1,num_epochs+1,1.0))
134 plt.legend()
135 plt.show()