Tensorflow timeline trace
根据
https://github.com/tensorflow/tensorflow/issues/1824
简单进行了测试
修改运行的脚本增加如下关键代码
例如mnist_softmax.py
from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function# Import datafrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.python.client import timelineimport tensorflow as tfflags = tf.app.flagsFLAGS = flags.FLAGSflags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data')mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)# Create the modelx = tf.placeholder(tf.float32, [None, 784])W = tf.Variable(tf.zeros([784, 10]))b = tf.Variable(tf.zeros([10]))y = tf.nn.softmax(tf.matmul(x, W) + b)# Define loss and optimizery_ = tf.placeholder(tf.float32, [None, 10])cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)# TrainintiOp = tf.initialize_all_variables()# Init run_metadatarun_metadata = tf.RunMetadata()# Open file to save tracetrace_file = open('/tmp/timeline.ctf.json', 'w')sess = tf.Session()sess.run(intiOp)for i in range(500): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_metadata)# Test trained modelcorrect_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))#timelinetrace = timeline.Timeline(step_stats=run_metadata.step_stats)trace_file.write(trace.generate_chrome_trace_format()) |
打开chrome浏览器输入
选择Load按钮加载输出的json文件
W,S按键可以缩放,A,D按键可以移动,具体帮助点击右上角“?”按钮

浙公网安备 33010602011771号