Java多线程5:synchronized锁方法块

synchronized同步代码块

用关键字synchronized声明方法在某些情况下是有弊端的,比如A线程调用同步方法执行一个较长时间的任务,那么B线程必须等待比较长的时间。这种情况下可以尝试使用synchronized同步语句块来解决问题。看一下例子:

public class ThreadDomain18
{
    public void doLongTimeTask() throws Exception
    {
        for (int i = 0; i < 100; i++)
        {
            System.out.println("nosynchronized threadName = " + 
                    Thread.currentThread().getName() + ", i = " + (i + 1));
        }
        System.out.println();
        synchronized (this)
        {
            for (int i = 0; i < 100; i++)
            {
                System.out.println("synchronized threadName = " + 
                        Thread.currentThread().getName() + ", i = " + (i + 1));
            }
        }
    }
}
public class MyThread18 extends Thread
{
    private ThreadDomain18 td;
    
    public MyThread18(ThreadDomain18 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        try
        {
            td.doLongTimeTask();
        } 
        catch (Exception e)
        {
            e.printStackTrace();
        }
    }
}
public static void main(String[] args)
{
    ThreadDomain18 td = new ThreadDomain18();
    MyThread18 mt0 = new MyThread18(td);
    MyThread18 mt1 = new MyThread18(td);
    mt0.start();
    mt1.start();
}

运行结果,分两部分来看:

synchronized threadName = Thread-1, i = 1
synchronized threadName = Thread-1, i = 2
nosynchronized threadName = Thread-0, i = 95
synchronized threadName = Thread-1, i = 3
nosynchronized threadName = Thread-0, i = 96
synchronized threadName = Thread-1, i = 4
nosynchronized threadName = Thread-0, i = 97
synchronized threadName = Thread-1, i = 5
nosynchronized threadName = Thread-0, i = 98
synchronized threadName = Thread-1, i = 6
nosynchronized threadName = Thread-0, i = 99
synchronized threadName = Thread-1, i = 7
nosynchronized threadName = Thread-0, i = 100
...
synchronized threadName = Thread-1, i = 98
synchronized threadName = Thread-1, i = 99
synchronized threadName = Thread-1, i = 100
synchronized threadName = Thread-0, i = 1
synchronized threadName = Thread-0, i = 2
synchronized threadName = Thread-0, i = 3
...

这个实验可以得出以下两个结论:

1、当A线程访问对象的synchronized代码块的时候,B线程依然可以访问对象方法中其余非synchronized块的部分,第一部分的执行结果证明了这一点

2、当A线程进入对象的synchronized代码块的时候,B线程如果要访问这段synchronized块,那么访问将会被阻塞,第二部分的执行结果证明了这一点

所以,从执行效率的角度考虑,有时候我们未必要把整个方法都加上synchronized,而是可以采取synchronized块的方式,对会引起线程安全问题的那一部分代码进行synchronized就可以了。

 

两个synchronized块之间具有互斥性

如果线程1访问了一个对象A方法的synchronized块,那么线程B对同一对象B方法的synchronized块的访问将被阻塞,写个例子来证明一下:

public class ThreadDomain19
{
    public void serviceMethodA()
    {
        synchronized (this)
        {
            try
            {
                System.out.println("A begin time = " + System.currentTimeMillis());
                Thread.sleep(2000);
                System.out.println("A end time = " + System.currentTimeMillis());
            } 
            catch (InterruptedException e)
            {
                e.printStackTrace();
            }
            
        }
    }
    
    public void serviceMethodB()
    {
        synchronized (this)
        {
            System.out.println("B begin time = " + System.currentTimeMillis());
            System.out.println("B end time = " + System.currentTimeMillis());
        }
    }
}

写两个线程分别调用这两个方法:

public class MyThread19_0 extends Thread
{
    private ThreadDomain19 td;
    
    public MyThread19_0(ThreadDomain19 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.serviceMethodA();
    }
}
public class MyThread19_1 extends Thread
{
    private ThreadDomain19 td;
    
    public MyThread19_1(ThreadDomain19 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.serviceMethodB();
    }
}

写个main函数:

public static void main(String[] args)
{
    ThreadDomain19 td = new ThreadDomain19();
    MyThread19_0 mt0 = new MyThread19_0(td);
    MyThread19_1 mt1 = new MyThread19_1(td);
    mt0.start();
    mt1.start();
}

看一下运行结果:

A begin time = 1443843271982
A end time = 1443843273983
B begin time = 1443843273983
B end time = 1443843273983

看到对于serviceMethodB()方法synchronized块的访问必须等到对于serviceMethodA()方法synchronized块的访问结束之后。那其实这个例子,我们也可以得出一个结论:synchronized块获得的是一个对象锁,换句话说,synchronized块锁定的是整个对象

 

synchronized块和synchronized方法

既然上面得到了一个结论synchronized块获得的是对象锁,那么如果线程1访问了一个对象方法A的synchronized块,线程2对于同一对象同步方法B的访问应该是会被阻塞的,因为线程2访问同一对象的同步方法B的时候将会尝试去获取这个对象的对象锁,但这个锁却在线程1这里。写一个例子证明一下这个结论:

public class ThreadDomain20
{
    public synchronized void otherMethod()
    {
        System.out.println("----------run--otherMethod");
    }
    
    public void doLongTask()
    {
        synchronized (this)
        {
            for (int i = 0; i < 1000; i++)
            {
                System.out.println("synchronized threadName = " + 
                        Thread.currentThread().getName() + ", i = " + (i + 1));
                try
                {
                    Thread.sleep(5);
                }
                catch (InterruptedException e)
                {
                    e.printStackTrace();
                }
            }
        }
    }
}

写两个线程分别调用这两个方法:

public class MyThread20_0 extends Thread
{
    private ThreadDomain20 td;
    
    public MyThread20_0(ThreadDomain20 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.doLongTask();
    }
}
public class MyThread20_1 extends Thread
{
    private ThreadDomain20 td;
    
    public MyThread20_1(ThreadDomain20 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.otherMethod();
    }
}

写个main函数调用一下,这里"mt0.start()"后sleep(100)以下是为了确保mt0线程先启动:

public static void main(String[] args) throws Exception
    {
        ThreadDomain20 td = new ThreadDomain20();
        MyThread20_0 mt0 = new MyThread20_0(td);
        MyThread20_1 mt1 = new MyThread20_1(td);
        mt0.start();
        Thread.sleep(100);
        mt1.start();
    }

看一下运行结果:

...
synchronized threadName = Thread-0, i = 995
synchronized threadName = Thread-0, i = 996
synchronized threadName = Thread-0, i = 997
synchronized threadName = Thread-0, i = 998
synchronized threadName = Thread-0, i = 999
synchronized threadName = Thread-0, i = 1000
----------run--otherMethod

证明了我们的结论。为了进一步完善这个结论,把"otherMethod()"方法的synchronized去掉再看一下运行结果:

...
synchronized threadName = Thread-0, i = 16
synchronized threadName = Thread-0, i = 17
synchronized threadName = Thread-0, i = 18
synchronized threadName = Thread-0, i = 19
synchronized threadName = Thread-0, i = 20
----------run--otherMethod
synchronized threadName = Thread-0, i = 21
synchronized threadName = Thread-0, i = 22
synchronized threadName = Thread-0, i = 23
...

"otherMethod()"方法和"doLongTask()"方法中的synchronized块异步执行了

 

将任意对象作为对象监视器

总结一下前面的内容:

1、synchronized同步方法

(1)对其他synchronized同步方法或synchronized(this)同步代码块呈阻塞状态

(2)同一时间只有一个线程可以执行synchronized同步方法中的代码

2、synchronized同步代码块

(1)对其他synchronized同步方法或synchronized(this)同步代码块呈阻塞状态

(2)同一时间只有一个线程可以执行synchronized(this)同步代码块中的代码

前面都使用synchronized(this)的格式来同步代码块,其实Java还支持对"任意对象"作为对象监视器来实现同步的功能。这个"任意对象"大多数是实例变量方法的参数,使用格式为synchronized(非this对象)。看一下将任意对象作为对象监视器的使用例子:

public class ThreadDomain21
{
    private String userNameParam;
    private String passwordParam;
    private String anyString = new String();
    
    public void setUserNamePassword(String userName, String password)
    {
        try
        {
            synchronized (anyString)
            {
                System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                        "在 " + System.currentTimeMillis() + " 进入同步代码块");
                userNameParam = userName;
                Thread.sleep(3000);
                passwordParam = password;
                System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                        "在 " + System.currentTimeMillis() + " 离开同步代码块");
            }
        }
        catch (InterruptedException e)
        {
            e.printStackTrace();
        }
    }
}

写两个线程分别调用一下:

public class MyThread21_0 extends Thread
{
    private ThreadDomain21 td;
    
    public MyThread21_0(ThreadDomain21 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.setUserNamePassword("A", "AA");
    }
}
public class MyThread21_1 extends Thread
{
    private ThreadDomain21 td;
    
    public MyThread21_1(ThreadDomain21 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.setUserNamePassword("B", "B");
    }
}

写一个main函数调用一下:

public static void main(String[] args)
{
    ThreadDomain21 td = new ThreadDomain21();
    MyThread21_0 mt0 = new MyThread21_0(td);
    MyThread21_1 mt1 = new MyThread21_1(td);
    mt0.start();
    mt1.start();
}

看一下运行结果:

线程名称为:Thread-0在 1443855101706 进入同步代码块
线程名称为:Thread-0在 1443855104708 离开同步代码块
线程名称为:Thread-1在 1443855104708 进入同步代码块
线程名称为:Thread-1在 1443855107708 离开同步代码块

这个例子证明了:多个线程持有"对象监视器"为同一个对象的前提下,同一时间只能有一个线程可以执行synchronized(非this对象x)代码块中的代码

锁非this对象具有一定的优点:如果在一个类中有很多synchronized方法,这时虽然能实现同步,但会受到阻塞,从而影响效率。但如果同步代码块锁的是非this对象,则synchronized(非this对象x)代码块中的程序与同步方法是异步的,不与其他锁this同步方法争抢this锁,大大提高了运行效率。

注意一下"private String anyString = new String();"这句话,现在它是一个全局对象,因此监视的是同一个对象。如果移到try里面,那么对象的监视器就不是同一个了,调用的时候自然是异步调用,可以自己试一下。

最后提一点,synchronized(非this对象x),这个对象如果是实例变量的话,指的是对象的引用,只要对象的引用不变,即使改变了对象的属性,运行结果依然是同步的

 

细化synchronized(非this对象x)的三个结论

synchronized(非this对象x)格式的写法是将x对象本身作为对象监视器,有三个结论得出:

1、当多个线程同时执行synchronized(x){}同步代码块时呈同步效果

2、当其他线程执行x对象中的synchronized同步方法时呈同步效果

3、当其他线程执行x对象方法中的synchronized(this)代码块时也呈同步效果

第一点很明显,第二点和第三点意思类似,无非一个是同步方法,一个是同步代码块罢了,举个例子验证一下第二点:

public class MyObject
{
    public synchronized void speedPrintString()
    {
        System.out.println("speedPrintString__getLock time = " + 
                System.currentTimeMillis() + ", run ThreadName = " + 
                Thread.currentThread().getName());
        System.out.println("----------");
        System.out.println("speedPrintString__releaseLock time = " + 
                System.currentTimeMillis() + ", run ThreadName = " + 
                Thread.currentThread().getName());
    }
}

ThreadDomain24中持有MyObject的引用:

public class ThreadDomain24
{
    public void testMethod1(MyObject mo)
    {
        try
        {
            synchronized (mo)
            {
                System.out.println("testMethod1__getLock time = " + 
                        System.currentTimeMillis() + ", run ThreadName = " + 
                        Thread.currentThread().getName());
                Thread.sleep(5000);
                System.out.println("testMethod1__releaseLock time = " + 
                        System.currentTimeMillis() + ", run ThreadName = " + 
                        Thread.currentThread().getName());
            }
        }
        catch (InterruptedException e)
        {
            e.printStackTrace();
        }
    }
}

写两个线程分别调用"speedPrintString()"方法和"testMethod1(MyObject mo)"方法:

public class MyThread24_0 extends Thread
{
    private ThreadDomain24 td;
    private MyObject mo;
    
    public MyThread24_0(ThreadDomain24 td, MyObject mo)
    {
        this.td = td;
        this.mo = mo;
    }
    
    public void run()
    {
        td.testMethod1(mo);
    }
}
public class MyThread24_1 extends Thread
{
    private MyObject mo;
    
    public MyThread24_1(MyObject mo)
    {
        this.mo = mo;
    }
    
    public void run()
    {
        mo.speedPrintString();
    }
}

写一个main函数启动这两个线程:

public static void main(String[] args)
{
    ThreadDomain24 td = new ThreadDomain24();
    MyObject mo = new MyObject();
    MyThread24_0 mt0 = new MyThread24_0(td, mo);
    MyThread24_1 mt1 = new MyThread24_1(mo);
    mt0.start();
    mt1.start();
}

看一下运行结果:

testMethod1__getLock time = 1443855939811, run ThreadName = Thread-0
testMethod1__releaseLock time = 1443855944812, run ThreadName = Thread-0
speedPrintString__getLock time = 1443855944812, run ThreadName = Thread-1
----------
speedPrintString__releaseLock time = 1443855944812, run ThreadName = Thread-1

看到"speedPrintString()"方法必须等待"testMethod1(MyObject mo)"方法执行完毕才可以执行,没有办法异步执行,证明了第二点的结论。第三点的验证方法类似,就不写代码证明了。

 

posted @ 2015-10-03 15:08  五月的仓颉  阅读(16152)  评论(11编辑  收藏  举报