三角函数习题01

前言

基本变形考查

【基本变形和基本的考查形式】

已知\(\vec{m}=(2sinx,\sqrt{3}cosx)\)\(\vec{n}=(cosx,2cosx)\),函数\(f(x)=\vec{m}\cdot \vec{n}-\sqrt{3}+1\)

\(f(x)=2sinx\cdot cosx+2\sqrt{3}\cdot cos^2x-\sqrt{3}+1\)

\(f(x)=sin2x+\sqrt{3}(2cos^2x-1)+1\)

\(=sin2x+\sqrt{3}cos2x+1\)

\(=2sin(2x+\cfrac{\pi}{3})+1\)

  • ①求周期;

\(T=\cfrac{2\pi}{2}\),得到\(T=\pi\)

  • ②求值域\((x\in R 或 x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}])\);最值(和最值点);

\(x\in R\),则

\(sin(2x+\cfrac{\pi}{3})=1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi+\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi+\cfrac{\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times1+1=3\)

\(sin(2x+\cfrac{\pi}{3})=-1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi-\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi-\cfrac{5\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times(-1)+1=-1\)

\(x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}]\),则可得

\(-\cfrac{2\pi}{3}\leq 2x\leq \cfrac{\pi}{2}\),则\(-\cfrac{\pi}{3}\leq 2x+\cfrac{\pi}{3}\leq \cfrac{5\pi}{6}\)

故当\(2x+\cfrac{\pi}{3}=-\cfrac{\pi}{3}\),即\(x=-\cfrac{\pi}{3}\)时,\(f(x)_{min}=f(-\cfrac{\pi}{3})=2\times (-\cfrac{\sqrt{3}}{2})+1=-\sqrt{3}+1\)

故当\(2x+\cfrac{\pi}{3}=\cfrac{\pi}{2}\),即\(x=\cfrac{\pi}{12}\)时,\(f(x)_{max}=f(\cfrac{\pi}{12})=2\times 1+1=3\)

  • 求单调区间\(\left(x\in R 或x\in [-\cfrac{\pi}{4},\cfrac{\pi}{2}]\right)\)(具体解法参见例2的法1和法2)

  • 求函数\(f(x)\)对称轴方程和对称中心坐标;

\(2x+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\),得到\(f(x)\)对称轴方程为\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{12}(k\in Z)\)

\(2x+\cfrac{\pi}{3}=k\pi(k\in Z)\),得到\(f(x)\)的对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{6},1)(k\in Z)\)

  • 求奇偶性\(\left(奇函数利用f(0)=0;偶函数利用f(0)=f(x)_{max}或f(x)_{min}\right)\)

比如,函数\(g(x)=2sin(2x+\phi+\cfrac{\pi}{3})(\phi\in (0,\pi))\)是偶函数,求\(\phi\)的值。

分析:由于函数\(g(x)\)是偶函数,则在\(x=0\)处必然取到最值,

故有\(2\times 0+\phi+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\)

\(\phi=k\pi+\cfrac{\pi}{6}(k\in Z)\)

\(k=0\),则\(\phi=\cfrac{\pi}{6}\in (0,\pi)\),满足题意,故所求\(\phi=\cfrac{\pi}{6}\)时,函数\(g(x)\)是偶函数。

【2016.天津高考】已知函数\(f(x)=4tanx\cdot sin(\cfrac{\pi}{2}-x)\cdot cos(x-\cfrac{\pi}{3})-\sqrt{3}\)

试讨论\(f(x)\)在区间\([-\cfrac{\pi}{4},\cfrac{\pi}{4}]\)上的单调性。

解析:先将所给函数化简为正弦型或者余弦型,

\(f(x)=4tan\cdot cosx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}\)

\(=4sinx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}=2sinxcosx+2\sqrt{3}sin^2x-\sqrt{3}\)

\(=sin2x+\sqrt{3}(1-cos2x)-\sqrt{3}=sin2x-\sqrt{3}cos2x\)

\(=2sin(2x-\cfrac{\pi}{3})\)

法1:先求解函数在\(x\in R\)上的单调区间,

\(2k\pi-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{\pi}{2}(k\in Z)\)

得到单调递增区间为\([k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)\)

又因为\(x\in [-\cfrac{\pi}{4},\cfrac{\pi}{4}]\)

然后给\(k\)赋值,令\(k=0\)

得到函数在区间\([-\cfrac{\pi}{12},\cfrac{\pi}{4}]\)上单调递增,在区间\([-\cfrac{\pi}{4},-\cfrac{\pi}{12}]\)上单调递减。

法2:由\(-\cfrac{\pi}{4}\leq x\leq \cfrac{\pi}{4}\),求得\(-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}\)

结合横轴为\(2x-\cfrac{\pi}{3}\)的图像可知,

\(-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq -\cfrac{\pi}{2}\)时,求得函数在区间\([-\cfrac{\pi}{4},-\cfrac{\pi}{12}]\)单调递减;

\(-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}\)时,求得函数在区间\([-\cfrac{\pi}{12},\cfrac{\pi}{4}]\)单调递增;

【基本+综合】已知函数\(f(x)=\cfrac{\sqrt{3}}{3}[cos(2x+\cfrac{\pi}{6})+4sinxcosx]+1\)\(x\in R\)

(1).求\(f(x)\)的单调递减区间;

提示:化简后,\(f(x)=sin(2x+\cfrac{\pi}{6})+1\),或者[\(f(x)=cos(2x-\cfrac{\pi}{3})+1\)],

单调递减区间为\([k\pi+\cfrac{\pi}{6},k\pi+\cfrac{2\pi}{3}]\)\((k\in Z)\)

(2).令\(g(x)=af(x)+b\),若函数\(g(x)\)在区间\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上的值域为\([-1,1]\),求\(a+b\)的值;

提示:当\(x\in [-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)时,\(sin(2x+\cfrac{\pi}{6})\in [-\cfrac{1}{2},1]\)

\(f(x)\in [\cfrac{1}{2},2]\),以下针对一次项系数\(a\)分类讨论如下:

①当\(a>0\)时,由\(2a+b=1\)\(\cfrac{1}{2}a+b=-1\),解得\(a=\cfrac{4}{3}\)\(b=-\cfrac{5}{3}\),故\(a+b=-\cfrac{1}{3}\)

②当\(a<0\)时,由\(2a+b=-1\)\(\cfrac{1}{2}a+b=1\),解得\(a=-\cfrac{4}{3}\)\(b=\cfrac{5}{3}\),故\(a+b=\cfrac{1}{3}\)

\(a+b\)的值为\(\cfrac{1}{3}\)\(-\cfrac{1}{3}\)

高阶考查形式

(2016宝鸡市第二次质量检测第17题)在\(\Delta ABC\)中,已知\(sin^2A+sin^2B+sinAsinB=sin^2C\),其中角\(A、B、C\)的对边分别为\(a、b、c\)

(1).求角\(C\)的大小。

(2).求\(\cfrac{a+b}{c}\)的取值范围。

分析:(1)角化边,由\(\cfrac{a}{2R}=sinA,\cfrac{b}{2R}=sinB,\cfrac{c}{2R}=sinC\)

得到\(a^2+b^2+ab=c^2\),即\(a^2+b^2-c^2=-ab\)

故由余弦定理得到\(cosC=\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}\)

\(C\in (0,\pi)\),故\(C=\cfrac{2\pi}{3}\)

(2)由(1)可知,\(A+B=\cfrac{\pi}{3}\),即\(A=\cfrac{\pi}{3}-B\)

边化角,由\(a=2RsinA,b=2RsinB,c=2RsinC\)

\(\cfrac{a+b}{c}=\cfrac{sinA+sinB}{sinC}=\cfrac{2\sqrt{3}}{3}(sinA+sinB)\)

\(=\cfrac{2\sqrt{3}}{3}[sin(\cfrac{\pi}{3}-B)+sinB]=\cfrac{2\sqrt{3}}{3}[\cfrac{\sqrt{3}}{2}cosB-\cfrac{1}{2}sinB+sinB]\)

\(=\cfrac{2\sqrt{3}}{3}(\cfrac{1}{2}sinB+\cfrac{\sqrt{3}}{2}cosB)=\cfrac{2\sqrt{3}}{3}sin(B+\cfrac{\pi}{3})\)

又由\(\begin{cases}B>0\\ \cfrac{\pi}{3}-B>0\end{cases}\)得到\(0<B<\cfrac{\pi}{3}\)

\(\cfrac{\pi}{3}<B+\cfrac{\pi}{3}<\cfrac{2\pi}{3}\),则\(\cfrac{\sqrt{3}}{2}<sin(B+\cfrac{\pi}{3})\leq 1\)

则有\(1<\cfrac{\sqrt{3}}{2}\cdot sin(B+\cfrac{\pi}{3})\leq \cfrac{2\sqrt{3}}{3}\)

\(\cfrac{a+b}{c}\)的取值范围为\((1,\cfrac{2\sqrt{3}}{3}]\)

引申:上述思路可以求解\(msinB+nsinC\)的取值范围(\(m、n\)是实数)。

在锐角三角形\(ABC\)中,\(C=2B\),则\(\cfrac{c}{b}\)的取值范围是\((\sqrt{2},\sqrt{3})\)

分析:本题先将\(\cfrac{c}{b}=\cfrac{sinC}{sinB}=2cosB\)

接下来的难点是求\(B\)的范围,注意列不等式的角度,锐角三角形的三个角都是锐角,要同时限制

\(\begin{cases} &0<A<\cfrac{\pi}{2} \\ &0<B<\cfrac{\pi}{2} \\ &0<C<\cfrac{\pi}{2}\end{cases}\)得到,\(\begin{cases} &0<\pi-3B<\cfrac{\pi}{2} \\ &0<B<\cfrac{\pi}{2} \\ &0<2B<\cfrac{\pi}{2}\end{cases}\)

解得\(B\in (\cfrac{\pi}{6},\cfrac{\pi}{4})\),故\(2cosB \in (\sqrt{2},\sqrt{3})\)

【三轮模拟考试理科用题】设\(A、B、C\)为三角形的三个内角,且方程\((sinB-sinA)x^2+(sinA-sinC)x+(sinC-sinB)=0\)有等根,那么角\(B\)的范围是( )

$A.\angle B >60^{\circ}$ $B.\angle B \geqslant 60^{\circ}$ $C.\angle B <60^{\circ}$ $D.\angle B \leqslant 60^{\circ}$

解析:\(\Delta=(sinA-sinC)^2-4(sinB-sinA)(sinC-sinB)\)

\(=sin^2A-2sinAsinC+sin^2C-4(sinBsinC-sinAsinC-sin^2B+sinAsinB)\)

\(=(sinA+sinC)^2-4sinB(sinA+sinC)+4sin^2B\)

\(=(sinA+sinC-2sinB)^2\)

令上式\(\Delta=0\),得

$2sinB=sinA+sinC=2sin\frac{A+C}{2}cos\frac{A-C}{2}\Longrightarrow $

\(4sin\frac{B}{2}cos\frac{B}{2}\)

\(=2cos\frac{B}{2}cos\cfrac{A-C}{2} \Longrightarrow\)

\(2sin\cfrac{B}{2}=cos\cfrac{A-C}{2}\)

\(\because 0\leq \cfrac{A-C}{2} <90^{\circ}\) ,$\therefore 0<cos\cfrac{A-C}{2} \leq 1 $

\(\therefore 0<2sin\cfrac{B}{2}\leq 1, 0<sin\cfrac{B}{2}\leq \cfrac{1}{2},\therefore 0^{\circ}<\cfrac{B}{2}\leq 30^{\circ} \therefore 0^{\circ}<B \leq 60^{\circ}\)

【变式】上题条件补充:若角\(B\)取最大值时,判断三角形的形状。

解析:\(\angle B=60^{\circ},cos\cfrac{A-C}{2}=1\) \(\Rightarrow A-C=0^{\circ} \Rightarrow A=C \therefore \Delta ABC\)为等边三角形。

【三轮模拟考试理科用题】设\(\Delta ABC\)的三个内角为\(A、B、C\),且\(tanA、tanB、tanC、2tanB\)成等差数列,则\(cos(B-A)=(\hspace{1cm})\)\(sin2B=(\hspace{1cm})\)

分析:由题目知,\(2tanB=tanA+tanC\)\(2tanC=3tanB\),则\(tanB=2tanA\)

\(tanA+tanB+tanC=tanA\times tanB\times tanC (A,B,C\neq \cfrac{\pi}{2})\),则有\(tanA+tanB+tanC=3tanB=2tanC\),所以\(2tanC=tanA\times tanB\times tanC\),则有\(tanAtanB=2\)

\(\begin{cases} tanB=2tanA \\ tanAtanB=2 \end{cases}\),得到\(tanA=1,tanB=2\),所以\(sinA=cosA=\cfrac{\sqrt{2}}{2},sinB=\cfrac{2\sqrt{5}}{5},cosB=\cfrac{\sqrt{5}}{5}\)

\(cos(B-A)=\cfrac{3\sqrt{10}}{10}\)\(sin2B=2sinBcosB=\cfrac{4}{5}\).

(三轮模拟考试理科用题)在\(\Delta ABC\)中,\(sinA=13sinBsinC,cosA=13cosBcosC\),求\(tanA+tanB+tanC\)的值。

分析:本题目的顺利求解需要知道\(tanA+tanB+tanC=tanA\times tanB\times tanC\)

由题目可知\(cosA=-cos(B+C)\),即\(-cosBcosC+sinBsinC=13cosBcosC\)

可得\(sinBsinC=14cosBcosC\),即\(tanBtanC=14\)

又由两式\(sinA=13sinBsinC,cosA=13cosBcosC\)相除得到,

\(tanA=tanBtanC\),故\(tanA+tanB+tanC=tanA\times tanB\times tanC=(tanBtanC)^2=14^2=196\).

(三轮模拟考试理科用题)存在实数\(c\),使得圆面\(x^2+y^2\leq 4\)恰好覆盖函数\(y=sin(\cfrac{\pi}{k}+c)\)图像的最高点或最低点共三个,则正数\(k\)的取值范围是多少?

https://www.desmos.com/calculator/pzzty0klqr

分析:这类题目一般都是函数的定义区间和周期有关联,

所以先由\(\begin{cases} &y=\pm1 \\ &x^2+y^2\leq 4\end{cases}\)

解得\(-\sqrt{3}\leq x \leq \sqrt{3}\),即图像在圆面内部的区间长度是\(2\sqrt{3}\)

又由题目可知三角函数的周期是\(T=\cfrac{2\pi}{\frac{\pi}{k}}=2k\)

结合课件演示,可得到控制条件是\(T\leq 2\sqrt{3}\leq 2T\)

\(2k\leq 2\sqrt{3}\leq 2\times 2k\)

解得\(\cfrac{\sqrt{3}}{2}<k\leq \sqrt{3}\)

课件演示思路:

先令\(c=0\),三角函数是奇函数,则圆面恰好覆盖四个最值点时,区间的长度是\(1.5T\),此时令\(c\)稍微增大一点或者减小一点,就能满足题意;

再令\(c=1.6\),三角函数是偶函数,则圆面恰好覆盖三个最值点时,区间的长度是\(T\),圆面恰好覆盖五个最值点时,区间的长度是\(2T\),此时令\(c\)稍微增大一点或者减小一点,就不再满足题意;

综上所述,要求存在实数\(c\),所以必须$T\leq 2\sqrt{3}\leq 2T $。

【三轮模拟考试理科用题】在\(\Delta ABC\)中,已知\(4cos^2\cfrac{A}{2}-cos2(B+C)=\cfrac{7}{2},a=2\),则\(\Delta ABC\)的面积的最大值为________.

分析:将已知等式变形为\(2\cdot 2cos^2\cfrac{A}{2}-[cos^2(B+C)-sin^2(B+C)]=\cfrac{7}{2}\)

\(2(1+cosA)-cos2A=\cfrac{7}{2}\),即\(2(1+cosA)-(2cos^2A-1)=\cfrac{7}{2}\)

化简为\(4cos^2A-4cosA+1=(2cosA-1)^2=0\)

解得\(cosA=\cfrac{1}{2},A\in(0,\pi)\),故\(A=\cfrac{\pi}{3}\)

到此题目转化为已知\(A=\cfrac{\pi}{3},a=2\),求\(\Delta ABC\)的面积的最大值。

由余弦定理\(a^2=b^2+c^2-2bccosA,A=\cfrac{\pi}{3},a=2\)得到\(b^2+c^2=4+bc\ge 2bc\)

解得\(bc\leq 4(当且仅当b=c=2时取到等号)\)

\(S_{\Delta ABC}=\cfrac{1}{2}bcsinA \leq \cfrac{\sqrt{3}}{4}\times 4=\sqrt{3}\).

(三轮模拟考试理科用题)设\(a,b\in R,c\in[0,2\pi)\),若对任意实数\(x\)都有\(2sin(3x-\cfrac{\pi}{3})=asin(bx+c)\),定义在区间\([0,3\pi]\)上的函数\(y=sin2x\)的图像与\(y=cosx\)的图像的交点的横坐标是\(d\)个,则满足条件的有序实数组\((a,b,c,d)\)的组数是多少个?

A.7 \(\hspace{3cm}\) B.11 \(\hspace{3cm}\) C.14 \(\hspace{3cm}\) D.28 \(\hspace{3cm}\)

分析:由题目可知,要想让两个函数图像完全重合,则至少先要满足\(|a|=2,\cfrac{2\pi}{|b|}=3\),即就是\(a=\pm 2,b=\pm 3\),这是必要条件;

\(a=-2,b=-3\)时,要使\(2sin(3x-\cfrac{\pi}{3})=asin(bx+c)=-2sin(-3x+c)=2sin(3x-c)\),故只能是\(c=+\cfrac{\pi}{3}\);以下的分析相同。

\(a=2,b=3\)时,要使\(2sin(3x-\cfrac{\pi}{3})=asin(bx+c)\)\(c=2\pi-\cfrac{\pi}{3}\)

\(a=2,b=-3\)时,要使\(2sin(3x-\cfrac{\pi}{3})=asin(bx+c)\)\(c=\pi+\cfrac{\pi}{3}\)

\(a=-2,b=3\)时,要使\(2sin(3x-\cfrac{\pi}{3})=asin(bx+c)\)\(c=\pi-\cfrac{\pi}{3}\);故\((a,b,c)\)的组合有4个;

又由\(sin2x=cosx\),变形得到\(cosx(2sinx-1)=0\)

\(cosx=0,x\in [0,3\pi]\)得到\(x=\cfrac{\pi}{2}或x=\cfrac{3\pi}{2}或x=\cfrac{5\pi}{2}\)

\(2sinx=1,x\in [0,3\pi]\)得到\(x=\cfrac{\pi}{6}或x=\cfrac{5\pi}{6}或x=2\pi+\cfrac{\pi}{6}或x=2\pi+\cfrac{5\pi}{6}\)

故不同的横坐标由7个,则满足条件的有序实数组\((a,b,c,d)\)的组数有28个。

课件地址:https://www.desmos.com/calculator/zhls0pjdlx

(三轮模拟考试理科用题)设\(\Delta ABC\)的三个内角为\(A、B、C\)的对边分别为\(a、b、c\),且\(a^2+b^2+ab-c^2=0\),则\(\cfrac{c\cdot cos(30^{\circ}-A)}{b+a}\)的值为____.

分析:将条件\(a^2+b^2+ab-c^2=0\)变形并代入\(cosC=\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}\)

\(C\in (0,\pi)\),故\(C=\cfrac{2\pi}{3}\)

又注意到所求式子的特点,边化角得到

\(\begin{align*}\cfrac{c\cdot cos(30^{\circ}-A)}{b+a}&=\cfrac{sinC\cdot cos(30^{\circ}-A)}{sinB+sinA}\\&=\cfrac{sinC\cdot cos(30^{\circ}-A)}{sin(\cfrac{\pi}{3}-A)+sinA}\\&=\cfrac{\cfrac{\sqrt{3}}{2}\cdot(\cfrac{\sqrt{3}}{2}cosA+\cfrac{1}{2}sinA)}{\cfrac{\sqrt{3}}{2}cosA+\cfrac{1}{2}sinA}\\&=\cfrac{\sqrt{3}}{2}\end{align*}\).

(三轮模拟考试理科用题)设\(\Delta ABC\)的三个内角为\(A、B、C\)的对边分别为\(a、b、c\),且\(a^2=3b^2+3c^2-2\sqrt{3}bcsinA\),则\(C\)的值为____.

分析:先变形为\(2b^2+2c^2+b^2+c^2-a^2=2\sqrt{3}bcsinA\)

\(\cfrac{2b^2+2c^2}{2bc}+\cfrac{b^2+c^2-a^2}{2bc}=\cfrac{2\sqrt{3}bcsinA}{2bc}\)

得到\(\cfrac{2b^2+2c^2}{2bc}+cosA=\sqrt{3}sinA\)

所以\(2sin(A-\cfrac{\pi}{6})=\cfrac{2b^2+2c^2}{2bc}\ge 2\)

所以\(sin(A-\cfrac{\pi}{6})\ge 1\),故\(sin(A-\cfrac{\pi}{6})= 1\)

\(A-\cfrac{\pi}{6}=\cfrac{\pi}{2}\),得到\(A=\cfrac{2\pi}{3}\)

\(A=\cfrac{2\pi}{3}\)代入已知式和余弦定理,

分别得到\(a^2=3b^2+3c^2-3bc\)\(a^2=b^2+c^2+bc\)

联立得到\(b=c\),故\(B=C=\cfrac{\pi}{6}\).

【三轮模拟考试理科用题】已知\(\alpha\)为第二象限角,\(sin(\alpha+\cfrac{\pi}{4})=\cfrac{\sqrt{2}}{10}\),则\(tan\cfrac{\alpha}{2}\)的值为多少?

法1:变形得到\(\cfrac{\sqrt{2}}{2}(sin\alpha+cos\alpha)=\cfrac{\sqrt{2}}{10}\)

解得\(sin\alpha+cos\alpha=\cfrac{1}{5}\),又因为\(\alpha\)为第二象限角,

再结合勾股数可得\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\)

\(tan\alpha=-\cfrac{4}{3}\),又由八卦图法可知\(\cfrac{\alpha}{2}\)在第一、三象限,

\(tan\cfrac{\alpha}{2}>0\),再由\(tan\alpha=-\cfrac{4}{3}=\cfrac{2tan\cfrac{\alpha}{2}}{1-(tan\cfrac{\alpha}{2})^2}\)

解方程得到\(tan\cfrac{\alpha}{2}=2\)

法2:同上法,得到\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\)

\(tan\cfrac{\alpha}{2}=\cfrac{sin\cfrac{\alpha}{2}}{cos\cfrac{\alpha}{2}}\)

\(=\cfrac{2sin\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}{2cos\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}\)

\(=\cfrac{sin\alpha}{1+cos\alpha}=\cfrac{\cfrac{4}{5}}{1-\cfrac{3}{5}}=2\)

【三轮模拟考试理科用题】设\(\Delta ABC\)的三个内角为\(A、B、C\)的对边分别为\(a、b、c\),若\(bc=1\)\(b+2ccosA=0\),则当角\(B\)取最大值时,\(\Delta ABC\)的周长\(l\)为多少?

分析:由于本题目提到角\(B\)取最大值,余弦函数\(y=cosx\)\((0,\pi)\)单调递减,

\(cosB\)自然应该取到最小值,结合\(cosB=\cfrac{a^2+c^2-b^2}{2ac}\)可知,

应该先利用已知条件转化得到\(a、b、c\)的关系,

\(cosA=-\cfrac{b}{2c}=\cfrac{b^2+c^2-a^2}{2bc}\)

得到\(b^2=\cfrac{a^2}{2}-\cfrac{c^2}{2}\)

此时需要替换的是\(b^2\),是因为式子的分母里有\(2ac\)

代入得到\(cosB=\cfrac{a^2+c^2-\cfrac{a^2}{2}+\cfrac{c^2}{2}}{2ac}\)

\(=\cfrac{\cfrac{a^2}{2}+\cfrac{3c^2}{2}}{2ac}\)

\(=\cfrac{1}{4}\cfrac{a^2+3c^2}{ac}\ge\cfrac{1}{4}\cfrac{2\sqrt{3}ac}{ac}\)

\(=\cfrac{\sqrt{3}}{2}\),(当且仅当\(a=\sqrt{3}c\)时取到等号),

此时\(B=\cfrac{\pi}{6}\)\(a=\sqrt{3}c\)

\(2b^2=a^2-c^2=3c^2-c^2=2c^2\),故\(b=c\),又\(bc=1\)

\(b=c=1,a=\sqrt{3}\),周长\(l\)\(2+\sqrt{3}\).

感悟反思:例13、15都用到均值不等式,不过,例13的均值不等式相对比较明显,而例15不太明显,而且当分析到要求\(cosB\)最小时,要正确使用均值不等式,自然应该替换掉\(b^2\),这样求得\(cosB\)最小时思路自然就开了。

【三轮模拟考试理科用题】已知\(\alpha\)是第三象限角,\(sin(\alpha-\cfrac{\pi}{6})=\cfrac{12}{13}\),求\(cos(\alpha+\cfrac{7\pi}{12})\)的值.

分析:给值求值类题目,关键是寻找已知角\((\alpha-\cfrac{\pi}{6})\)和未知角\((\alpha+\cfrac{7\pi}{12})\)的关系,

注意到已知角是一个,未知角也是一个,所以这时候一般不考虑加减组合,

而考虑“余角、补角、倍角、半角、特殊角”这个思路。

\(sin(\alpha-\cfrac{\pi}{6})=\cfrac{12}{13}\)\(\alpha\)是第三象限角,

得到\(\alpha-\cfrac{\pi}{6}\)只能是第二象限的角,则\(cos(\alpha-\cfrac{\pi}{6})=-\cfrac{5}{13}\)

又由于\((\alpha+\cfrac{7\pi}{12})-(\alpha-\cfrac{\pi}{6})=\cfrac{3\pi}{4}\)

\(cos(\alpha+\cfrac{7\pi}{12})=cos[\cfrac{3\pi}{4}+(\alpha-\cfrac{\pi}{6})]\)

\(=-\cfrac{\sqrt{2}}{2}\times (-\cfrac{5}{13})-\cfrac{\sqrt{2}}{2}\times \cfrac{12}{13}=-\cfrac{7\sqrt{2}}{26}\).

反思:有学生对此提出了异议:认为上述的算法有漏洞;

理由如下:

由于\(2k\pi+\pi<\alpha<2k\pi+\cfrac{3\pi}{2}\),则\(2k\pi+\pi-\cfrac{\pi}{6}<\alpha-\cfrac{\pi}{6}<2k\pi+\cfrac{3\pi}{2}-\cfrac{\pi}{6}\)

\(2k\pi+\cfrac{5\pi}{6}<\alpha-\cfrac{\pi}{6}<2k\pi+\cfrac{4\pi}{3}\),

又由于\(sin(\alpha-\cfrac{\pi}{6})=\cfrac{12}{13}\),故上述的角的范围还可以压缩到

\(2k\pi+\cfrac{5\pi}{6}<\alpha-\cfrac{\pi}{6}<2k\pi+\pi\)

\(2k\pi+\cfrac{5\pi}{6}+\cfrac{3\pi}{4}<\alpha-\cfrac{\pi}{6}+\cfrac{3\pi}{4}<2k\pi+\pi +\cfrac{3\pi}{4}\),即就是

\(2k\pi+\cfrac{19\pi}{12}<\alpha+\cfrac{7\pi}{12}<2k\pi+\cfrac{7\pi}{4}\),

此时角\(\alpha+\cfrac{7\pi}{12}\)在第四象限,其余弦值应该是正值,这样和上述的解法矛盾了,只能是编制题目时没有注意这一点。

(三轮模拟考试理科用题)已知\(f(x)=2Acos^2(\omega x+\phi)(A>0,\omega>0,0<\phi<\cfrac{\pi}{2})\),直线\(x=\cfrac{\pi}{3}\)和点\((\cfrac{\pi}{12},0)\)分别是函数\(f(x)\)图象上相邻的一条对称轴和一个对称中心,则函数\(f(x)\)的单调增区间为( ).

$A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)$
$B.[k\pi-\cfrac{\pi}{6} ,k\pi+\cfrac{\pi}{3}](k\in Z)$
$C.[k\pi-\cfrac{5\pi}{12} ,k\pi+\cfrac{\pi}{12}](k\in Z)$
$D.[k\pi+\cfrac{\pi}{12} ,k\pi+\cfrac{7\pi}{12}](k\in Z)$

\(A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)\)\(\hspace{2cm}\) \(B.[k\pi-\cfrac{\pi}{6} ,k\pi+\cfrac{\pi}{3}](k\in Z)\);
\(C.[k\pi-\cfrac{5\pi}{12} ,k\pi+\cfrac{\pi}{12}](k\in Z)\)\(\hspace{2cm}\) \(D.[k\pi+\cfrac{\pi}{12} ,k\pi+\cfrac{7\pi}{12}](k\in Z)\);

分析:这类题目一般需要先将\(f(x)\)转化为正弦型或者余弦型,

再利用给定的条件分别求\(\omega\)\(\phi\),由\(f(x)=2Acos^2(\omega x+\phi)=A[cos2(\omega x+\phi)+1]-A=Acos(2\omega x+2\phi)\)

故其周期为\(T=\cfrac{2\pi}{2\omega}=\cfrac{\pi}{\omega}\)

又由题目可知\(\cfrac{T}{4}=\cfrac{\pi}{3}-\cfrac{\pi}{12}=\cfrac{\pi}{4}\),则\(T=\pi=\cfrac{\pi}{\omega}\)

\(\omega=1\),则函数简化为\(f(x)=Acos(2x+2\phi)\),再利用直线\(x=\cfrac{\pi}{3}\)是函数\(f(x)\)图象上的一条对称轴,

\(2\times \cfrac{\pi}{3}+2\phi=k\pi,(k\in Z)\),解得\(\phi=\cfrac{k\pi}{2}-\cfrac{\pi}{3}\)

\(k=1\),则\(\phi=\cfrac{\pi}{6}\in (0,\cfrac{\pi}{2})\),满足题意,故\(f(x)=Acos(2x+2\phi)=Acos(2x+\cfrac{\pi}{3})\).

\(2k\pi-\pi\leq 2x+\cfrac{\pi}{3}\leq 2k\pi(k\in Z)\),解得\(k\pi-\cfrac{2\pi}{3}\leq x \leq k\pi-\cfrac{\pi}{6}\),即单调递增区间为\(A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)\);

(连比形式,巧设比例因子)在\(\Delta ABC\)中,\(tanA:tanB:tanC=1:2:3\),求\(\cfrac{AC}{AB}\)的值;

分析:(巧设比例因子)设\(tanA=k,tanB=2k,tanC=3k,(k>0)\),

则由\(tanA\times tanB\times tanC=tanA+tanB+tanC\)可知,\(6k=6k^3\),解得\(k=1\).则有\(tanA=1,tanB=2,tanC=3\),

再设比例因子,比如设\(sinB=2m,cosB=m,(m>0)\),由平方关系可得,\(5m^2=1,m=\cfrac{1}{\sqrt{5}}\),

\(sinB=\cfrac{2}{\sqrt{5}},sinC=\cfrac{3}{\sqrt{10}}\),则\(\cfrac{AC}{AB}=\cfrac{sinB}{sinC}=\cfrac{\cfrac{2}{\sqrt{5}}}{\cfrac{3}{\sqrt{10}}}=\cfrac{2\sqrt{2}}{3}\).

(2017高考真题 理科全国卷2的第17题)\(\Delta ABC\) 的内角A,B,C的对边分别是\(a,b,c\),已知\(sin(A+C)=8sin^2\cfrac{B}{2}\)

(1)求\(cosB\).

分析:\(sin(A+C)=sinB=8\cdot \cfrac{1-cosB}{2}\),得到\(sinB=4(1-cosB)\)

\(\sqrt{1-cos^2B}=4(1-cosB)\),平方得到\(17cos^2B-32cosB+15=0\)

由十字相乘法得到 \((17cosB-15)(cosB-1)=0\)

得到\(cosB=\cfrac{15}{17}\)\(cosB=1(舍去)\),故\(cosB=\cfrac{15}{17}\)

(2)若\(a+c=6\)\(S_{\Delta ABC}=2\),求\(b\).

分析:由\(cosB=\cfrac{15}{17}\)得到\(sinB=\cfrac{8}{17}\)

\(S_{\Delta ABC}=\cfrac{1}{2}acsinB=2\)得到,\(ac=\cfrac{17}{2}\)

\(b^2=a^2+c^2-2accosB=(a+c)^2-2ac-2accosB=6^2-2\cdot \cfrac{17}{2}-2\cdot \cfrac{17}{2}\cdot\cfrac{15}{17}=4\)

\(b=2\)

(2017高考真题 文科全国卷2的第16题) \(\Delta ABC的内角A,B,C的对边分别是a,b,c\),若\(2bcosB=acosC+ccosA\),则\(B\)=________.

法1:角化边,得到\(2b\cdot \cfrac{a^2+c^2-b^2}{2ac}=a\cdot \cfrac{a^2+b^2-c^2}{2ab}+c\cdot \cfrac{b^2+c^2-a^2}{2bc}\)

两边同乘以\(abc\),约掉分母,化简整理为\(a^2+c^2-b^2=ac\)

\(cosB=\cfrac{a^2+c^2-b^2}{2ac}=\cfrac{1}{2}\),又\(b\in (0,\pi)\),则\(B=\cfrac{\pi}{3}\)

法2:边化角,由已知得到\(2sinBcosB=sinAcosC+cosAsinC=sin(A+C)=sinB\),故得到\(cosB=\cfrac{1}{2}\),又\(B\in (0,\pi)\),则\(B=\cfrac{\pi}{3}\)

(2017高考真题 文科全国卷2的第13题)函数\(f(x)=2cosx+sinx\)的最大值为_______.

分析:\(f(x)=\sqrt{5}sin(x+\phi)(tan\phi=2)\),故\(f(x)_{max}=\sqrt{5}\)

(2017高考真题 理科全国卷2的第14题)函数\(f(x)=sin^2x+\sqrt{3}cosx-\cfrac{3}{4}(x\in[0,\cfrac{\pi}{2}])\)的最大值为_______.

分析:由于\(x\in[0,\cfrac{\pi}{2}]\),则\(cosx\in [0,1]\)

\(cosx=t\in [0,1]\)

\(f(x)=1-cos^2x+\sqrt{3}cosx-\cfrac{3}{4}=1-t^2+\sqrt{3}t-\cfrac{3}{4}=-(t-\cfrac{\sqrt{3}}{2})^2+1=g(t)\)

故当\(t=\cfrac{\sqrt{3}}{2}\)时,\(g(t)_{max}=f(x)_{max}=1\)

(2017高考真题 文科全国卷1的第11题)\(\Delta ABC的内角A,B,C的对边分别是a,b,c\),已知\(sinB+sinA\cdot (sinC-cosC)=0,a=2,c=\sqrt{2}\),则\(C\)=________.

分析:由于\(sinB=sin(A+C)=sinAcosC+cosAsinC\)

则有\(sinAcosC+cosAsinC+sinAsinC-sinAcosC=0\)

,即\(cosAsinC+sinAsinC=0\),又因为\(sinC\neq 0\)

故得到\(sinA+cosA=0\),即\(tanA=-1\) ,即\(A=\cfrac{3\pi}{4}\)

由正弦定理\(\cfrac{a}{sinA}=\cfrac{c}{sinC}\)

\(a=2,c=\sqrt{2}\)代入得到\(sinC=\cfrac{1}{2}\),故\(C=\cfrac{\pi}{6}\)

(2017高考真题 文科全国卷1的第15题)已知\(\alpha\in(0,\cfrac{\pi}{2})\)\(tan\alpha=2\),则\(cos(\alpha-\cfrac{\pi}{4})\)=__________.

分析:由\(tan\alpha=2,\alpha\in(0,\cfrac{\pi}{2})\)

故有\(sin\alpha=2k,cos\alpha=k(k>0)\),由平方关系可知\(k=\cfrac{\sqrt{5}}{5}\)

\(sin\alpha=\cfrac{2\sqrt{5}}{5}\)\(cos\alpha=\cfrac{\sqrt{5}}{5}\)

\(cos(\alpha-\cfrac{\pi}{4})=cos\alpha\cdot cos\cfrac{\pi}{4}+sin\alpha\cdot sin\cfrac{\pi}{4}\)

\(=\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}+\cfrac{2\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}\)

\(=\cfrac{3\sqrt{10}}{10}\)

(三角函数图像性质和解三角形结合)(2017•福州模拟)在\(\Delta ABC\)中,角\(A,B,C\)的对边分别为\(a,b,c\),满足\((2b-c)\cdot cosA=a\cdot cosC\)。 

(1)求角\(A\)的大小;(考查角度:解三角形)

(2)若\(a=3\),求\(\Delta ABC\)的周长的最大值。(考查角度:三角函数图像性质)

分析:

(1)由\((2b-c)\cdot cosA=a\cdot cosC\)及正弦定理,

\((2sinB-sinC)cosA=sinAcosC\)

所以\(2sinBcosA=sinCcosA+sinAcosC\), 所以\(2sinBcosA=sin(C+A)=sinB\)

因为\(B\in (0,π)\),所以\(sinB\neq 0\)

因为\(A\in (0,π)\)\(cosA=\cfrac{1}{2}\),所以$A=\cfrac{\pi}{3} $。

(2)由(1)得$A=\cfrac{\pi}{3} $,

由正弦定理得\(\cfrac{b}{sinB}=\cfrac{c}{sinC} =\cfrac{a}{sinA} =\cfrac{3}{\frac{\sqrt{3}}{2}} =2\sqrt{3}\)

所以\(b=2\sqrt{3}\cdot sinB\)\(c=2\sqrt{3}\cdot sinC\)

\(\Delta ABC\)的周长:\(l=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sinC\)

\(=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sin(\cfrac{2\pi}{3}-B)\)

\(=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot (\cfrac{\sqrt{3}}{2}cosB+\cfrac{1}{2}sinB)\)

\(=3+3\sqrt{3}sinB+3cosB=3+6sin(B+\cfrac{\pi}{6})\)

因为\(B\in(0,\cfrac{2\pi}{3})\),所以当\(B=\cfrac{\pi}{3}\) 时,\(\Delta ABC\)的周长取得最大值,最大值为9。

反思总结:三角函数和解三角形的交汇处的题型

这类题目往往会设置第一问求一个角(如\(A\)),第二问已知边\(a\)(注意对角和对边的关系),接下来可以考查的方向有

①再已知\(S_△\),求解\(b+c\)的取值范围; 或者已知\(b+c\)\(S_△\)的取值范围。

②求解\(msinB+nsinC\)的取值范围(\(m、n\)是实数)

③求解\(msinB\cdot nsinC\)的取值范围(\(m、n\)是实数)

④求解\(S_△=\cfrac{1}{2}bcsinA\)的取值范围

⑤求解周长的取值范围 \(l=a+b+c\)

⑥求解类似周长的取值范围 \(l=2a+3b-c\)

⑦难点:自变量的取值范围,已知三角形和锐角三角形时,自变量的范围是不一样的。

【三角函数和解三角形和向量结合】已知函数\(f(x)=cosxsinx-\sqrt{3}cos^2x+\cfrac{\sqrt{3}}{2}\)

(1)求函数\(f(x)\)的单调递增区间

分析:函数化简为\(f(x)=sin(2x-\cfrac{\pi}{3})\),过程略,\([k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)\)

(2)在\(\Delta ABC\)中,\(A\)为锐角且\(f(A)=\cfrac{\sqrt{3}}{2}\)\(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}\)\(AB=\sqrt{3}\)\(AD=2\),求\(sin\angle BAD\)

分析:由\(f(A)=sin(2A-\cfrac{\pi}{3})=\cfrac{\sqrt{3}}{2}\),解得\(A=\cfrac{\pi}{3}\)\(A=\cfrac{\pi}{2}\)(舍去)。

又由于\(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}\),如图所示,

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AE}=2\overrightarrow{AF}=2\cdot \cfrac{3}{2}\overrightarrow{AD}=3\overrightarrow{AD}\)

故点\(D\)\(\triangle ABC\)的重心,详细说明\(\;\;\)[1] (点击这个蓝色的数字)

\(AB\)\(AC\)为邻边做平行四边形\(ABEC\),由于\(AD=2\),则\(AE=6\)

\(\Delta ABE\)中,\(AB=\sqrt{3}\)\(\angle ABE=120^{\circ}\)

由正弦定理可得,\(\cfrac{\sqrt{3}}{sin\angle AEB}=\cfrac{6}{\cfrac{\sqrt{3}}{2}}\)

可得\(sin\angle AEB=\cfrac{1}{4}\)\(cos\angle AEB=\cfrac{\sqrt{15}}{4}\)

\(sin\angle BAD=sin(\cfrac{\pi}{3}-\angle AEB)\)

\(=\cfrac{\sqrt{3}}{2}\times \cfrac{\sqrt{15}}{4}-\cfrac{1}{2}\times \cfrac{1}{4}=\cfrac{3\sqrt{5}-1}{8}\)

解后反思:利用已知的向量三角形,巧妙的构造了一个三角形,这样就能利用正弦定理和两角差的正弦公式求解了。

(2017\(\cdot\)全国卷I)已知\(\Delta ABC\)的内角\(A,B,C\)的对边分别是\(a,b,c\)\(S_{\Delta ABC}=\cfrac{a^2}{3sinA}\)

(1)求\(sinBsinC\)的值;

(2)若\(6cosBcosC=1\)\(a=3\),求\(\Delta ABC\)的周长;

分析:(1)由\(S_{\Delta ABC}=\cfrac{1}{2}acsinB=\cfrac{a^2}{3sinA}\)

变形得到\(\cfrac{1}{2}csinB=\cfrac{a}{3sinA}\)

边化角,得到\(\cfrac{1}{2}sinCsinB=\cfrac{sinA}{3sinA}\)

\(sinBsinC=\cfrac{2}{3}\)

(2)由于求三角形周长的题目,一般都会知道一条边和其对角,现在知道了边\(a\),故猜想应该能求得\(A\)

这样想,我们一般就会将条件作差而不是作商,

\(cosBcosC-sinBsinC=-\cfrac{1}{2}\)

\(cos(B+C)=-cosA=-\cfrac{1}{2}\),得到\(A=\cfrac{\pi}{3}\)

由题意\(\cfrac{1}{2}bcsinA=\cfrac{a^2}{3sinA}\)\(a=3\)

得到\(bc=8\)

再由余弦定理得到\(a^2=b^2+c^2-2bccosA\)

得到\(3^2=(b+c)^2-2bc-2bccosA\),即\(b+c=\sqrt{33}\)

故周长为\(3+\sqrt{33}\)

【2016\(\cdot\)全国卷Ⅰ】已知\(\Delta ABC\)的内角\(A,B,C\)的对边分别是\(a,b,c\)\(2cosC(acosB+bcosA)=c\)

(1)、求角\(C\)

(2)、若\(c=\sqrt{7}\)\(S_{\Delta ABC}=\cfrac{3\sqrt{3}}{2}\),求\(\Delta ABC\)的周长。

分析:(1)由正弦定理边化角,得到

\(2cosC(sinAcosB+sinBcosA)=sinC\);即\(2cosCsin(A+B)=sinC\)

\(2cosCsinC=sinC\),又\(sinC\neq 0\),故\(2cosC=1\),即\(cosC=\cfrac{1}{2}\)

\(C\in (0,\pi)\) ,故\(C=\cfrac{\pi}{3}\)

(2)由已知\(S_{\Delta ABC}=\cfrac{3\sqrt{3}}{2}=\cfrac{1}{2}absinC\)\(C=\cfrac{\pi}{3}\)

\(ab=6\),由余弦定理得到,\(c^2=a^2+b^2-2abcosC=(a+b)^2-2ab-2abcosC\)

结合\(C=\cfrac{\pi}{3}\)\(ab=6\)\(c=\sqrt{7}\),代入上式得到

\((a+b)^2=25\),即\(a+b=5\),故三角形的周长为\(a+b+c=5+\sqrt{7}\)

【2014\(\cdot\)新课标全国卷Ⅰ】【三角恒等变换】设\(\alpha,\beta \in (0,\cfrac{\pi}{2})\),且\(tan\alpha=\cfrac{1+sin\beta}{cos\beta}\),则【】

$A.3\alpha-\beta=\cfrac{\pi}{2}$ $B.3\alpha+\beta=\cfrac{\pi}{2}$ $C.2\alpha-\beta=\cfrac{\pi}{2}$ $D.2\alpha+\beta=\cfrac{\pi}{2}$

分析:切化弦得到,\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1+sin\beta}{cos\beta}\)

\(sin\alpha cos\beta-cos\alpha sin\beta=cos\alpha\),即\(sin(\alpha-\beta)=cos\alpha\)

又由已知可得,\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\)

再结合\(sin(\alpha-\beta)=cos\alpha\)\(\alpha \in (0,\cfrac{\pi}{2})\)\(cos\alpha>0\)

故可将\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\)压缩为\(0<\alpha-\beta<-\cfrac{\pi}{2}\),,

这样\(sin(\alpha-\beta)=cos\alpha\);且\(\alpha,\alpha-\beta \in (0,\cfrac{\pi}{2})\)

故有\((\alpha-\beta)+\alpha=\cfrac{\pi}{2}\),即\(2\alpha-\beta=\cfrac{\pi}{2}\),选C.

【2016\(\cdot\)上海卷】【解三角方程】方程\(3sinx=1+cos2x\)在区间\([0,2\pi]\)上的解为_______________。

分析:采用升幂降角公式,得到\(3sinx=1+1-2sin^2x\)

整理为\(2sin^2x+3sinx-2=0\),即\((sinx+2)(2sinx-1)=0\)

解得\(sinx=-2(舍去)\)\(sinx=\cfrac{1}{2}\)

再由\(sinx=\cfrac{1}{2}\)\(x\in[0,2\pi]\)

采用图像可得,\(x=\cfrac{\pi}{6}\)\(x=\cfrac{5\pi}{6}\)


  1. 可以直接使用的结论:
    \(\triangle ABC\)中,若已知\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\),则可知点\(E\)为边\(BC\)的中点;
    \(\triangle ABC\)中,已知\(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}\),可知点\(D\)\(\triangle ABC\)的重心;
    具体解释如下图所示,
    若已知\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\),或者\(\overrightarrow{AE}=\cfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})\),则可知点\(E\)\(BC\)的中点;

    已知\(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}\),则\(3\overrightarrow{AD}=2\overrightarrow{AE}\),则\(\overrightarrow{AD}=\cfrac{2}{3}\overrightarrow{AE}\),可知点\(D\)\(\triangle ABC\)的重心; ↩︎

posted @ 2017-04-12 15:31  静雅斋数学  阅读(1193)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋