Python学习笔记(七)——面向对象
Python面向对象
概述
- 面向过程:根据业务逻辑从上到下写垒代码
- 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
- 面向对象:对函数进行分类和封装,让开发“更快更好更强...”
面向过程编程最易被初学者接受,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,即:将之前实现的代码块复制到现需功能处,此为1.0。
随着时间的推移,开始使用了函数式编程,增强代码的重用性和可读性,此为2.0。
而从现在开始,我们即将来学习编程方式的升级版——面向对象编程(Object Oriented Programming, OOP, 面向对象程序设计),华丽丽的3.0。
PS:Java和C#来说只支持面向对象编程,而python比较灵活即支持面向对象编程也支持函数式编程。
创建类和对象
面向对象编程是一种编程方式,此编程方式需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” 的使用。
- 类就是一个模板,模板里可以包含多个函数,函数里实现一些功能;
- 对象则是根据模板创建的实例,通过实例对象可以执行类中的函数;

- class是关键字,表示类
- 创建对象,类名称后加括号即可
ps:类中的函数第一个参数必须是self(详细见:类的三大特性之封装)
类中定义的函数叫做 “方法”。
|
1
2
3
4
5
6
7
8
9
10
11
12
|
# 创建类class foo: def bar(self): print "bar" def hello(self,name): print "I am %s" % name# 根据类foo创建对象objobj = foo()obj.bar() # 执行bar方法obj.hello('korala') # 执行hello方法 |
运行结果:
|
1
2
|
barI am korala |
看了上面的例子是不是有点困惑啊?使用函数式编程和面向对象编程方式来执行一个“方法”时函数要比面向对象简便。
- 面向对象:【创建对象】【通过对象执行方法】
- 函数编程:【执行函数】
看了上述的对比函数的确要比面向对象简便,然而事情的真相是。。。不同的场景中其适合的编程方式也是不一样滴。
总结:函数式的应用场景 --> 各个函数之间是独立且无共用的数据。
至于面向对象该如何应用呢?别急,接着往下看。
面向对象的三大特性
想知道面向对象应用在哪些场景,先来了解它的三大特性:
- 封装
- 继承
- 多态
一、 封装
封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容。
所以,在使用面向对象的封装特性时,需要:
- 将内容封装到某处
- 从某处调用被封装的内容
第一步:将内容封装到某处
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# 创建类class foo: def __int__(self, name, age): # 称为构造方法,根据类创建对象时自动执行 self.name = name self.age = age# 根据类foo创建对象# 自动执行foo类的 __init__ 方法obj1 = foo('wxy', 20) # 将wxy和20分别封装到 obj1 self 的name和age属性中# 根据类foo创建对象# 自动执行foo类的 __init__ 方法obj2 = foo('korala', 18) # 将korala和18分别封装到 obj2 self 的name和age属性中 |
self 是一个形式参数,当执行 obj1 = Foo('wxy',20) 时,self 等于 obj1;当执行 obj2 = Foo('korala', 18 ) 时,self 等于 obj2。
所以,内容其实被封装到了对象 obj1 和 obj2 中,每个对象中都有 name 和 age 属性,在内存里类似于下图来保存。

第二步:从某处调用被封装的内容
调用被封装的内容时,有两种情况:
- 通过对象直接调用
- 通过self间接调用
1、通过对象直接调用被封装的内容
上图展示了对象 obj1 和 obj2 在内存中保存的方式,根据保存格式可以如此调用被封装的内容:对象.属性名
|
1
2
3
4
5
6
7
8
9
10
11
12
|
class foo: def __int__(self, name, age): self.name = name self.age = ageobj1 = foo('wxy', 20)print obj1.name # 直接调用obj1对象的name属性print obj1.age # 直接调用obj1对象的age属性obj2 = foo('korala', 18)print obj2.name # 直接调用obj2对象的name属性print obj2.age # 直接调用obj2对象的age属性 |
2、通过self间接调用被封装的内容
执行类中的方法时,需要通过self间接调用被封装的内容
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
class foo: def __int__(self, name, age): self.name = name self.age = age def detail(self): print self.name print self.ageobj1 = foo('wxy', 20)obj1.detail() # python默认会将obj1传给self参数,即:obj1.detail(obj1),故此时方法内部的 self.name 是 wxy; self.age 是 20obj2 = foo('korala', 18)obj2.detail() # python默认会将obj2传给self参数,即:obj2.detail(obj2),故此时方法内部的 self.name 是 korala ; self.age 是 18 |
综上所述,对于面向对象的封装来说,其实就是使用构造方法将内容封装到 对象 中,然后通过对象直接或者self间接获取被封装的内容。
练习一:在终端输出如下信息
小明,10岁,男,上山去砍柴
小明,10岁,男,开车去东北
小明,10岁,男,最爱大保健
老李,90岁,男,上山去砍柴
老李,90岁,男,开车去东北
老李,90岁,男,最爱大保健
# 函数式编程
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def kanchai(name, age, gender): print "%s,%s岁,%s,上山去砍柴" % (name, age, gender)def qudongbei(name, age, gender): print "%s,%s岁,%s,开车去东北" % (name, age, gender)def dabaojian(name, age, gender): print "%s,%s岁,%s,最爱大保健" % (name, age, gender)kanchai('小明', 10, '男')qudongbei('小明', 10, '男')dabaojian('小明', 10, '男')kanchai('老李', 90, '男')qudongbei('老李', 90, '男')dabaojian('老李', 90, '男') |
# 面向对象
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
class Foo: def __init__(self, name, age ,gender): self.name = name self.age = age self.gender = gender def kanchai(self): print "%s,%s岁,%s,上山去砍柴" %(self.name, self.age, self.gender) def qudongbei(self): print "%s,%s岁,%s,开车去东北" %(self.name, self.age, self.gender) def dabaojian(self): print "%s,%s岁,%s,最爱大保健" %(self.name, self.age, self.gender)xiaoming = Foo('小明', 10, '男')xiaoming.kanchai()xiaoming.qudongbei()xiaoming.dabaojian()laoli = Foo('老李', 90, '男')laoli.kanchai()laoli.qudongbei()laoli.dabaojian() |
上述对比可以看出,如果使用函数式编程,需要在每次执行函数时传入相同的参数,如果参数多的话,就需要n次粘贴复制了;而对于面向对象只需要在创建对象时,将所有需要的参数封装到当前对象中,之后再次使用时,通过self间接去当前对象中取值即可。
练习二:游戏人生程序
1、创建三个游戏人物,分别是:
苍井井,女,18,初始战斗力1000
东尼木木,男,20,初始战斗力1800
波多多,女,19,初始战斗力2500
2、游戏场景,分别:
草丛战斗,消耗200战斗力
自我修炼,增长100战斗力
多人游戏,消耗500战斗力
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
# ##################### 定义实现功能的类 #####################class Person: def __init__(self, na, gen, age, fig): self.name = na self.gender = gen self.age = age self.fight =fig def grassland(self): """注释:草丛战斗,消耗200战斗力""" self.fight = self.fight - 200 def practice(self): """注释:自我修炼,增长100战斗力""" self.fight = self.fight + 200 def incest(self): """注释:多人游戏,消耗500战斗力""" self.fight = self.fight - 500 def detail(self): """注释:当前对象的详细情况""" temp = "姓名:%s ; 性别:%s ; 年龄:%s ; 战斗力:%s" % (self.name, self.gender, self.age, self.fight) print temp# ##################### 开始游戏 #####################cang = Person('苍井井', '女', 18, 1000) # 创建苍井井角色dong = Person('东尼木木', '男', 20, 1800) # 创建东尼木木角色bo = Person('波多多', '女', 19, 2500) # 创建波多多角色cang.incest() #苍井空参加一次多人游戏dong.practice()#东尼木木自我修炼了一次bo.grassland() #波多多参加一次草丛战斗#输出当前所有人的详细情况cang.detail()dong.detail()bo.detail()cang.incest() #苍井空又参加一次多人游戏dong.incest() #东尼木木也参加了一个多人游戏bo.practice() #波多多自我修炼了一次#输出当前所有人的详细情况cang.detail()dong.detail()bo.detail() |
小结:
封装:1、将数据进行封装,便于使用时取出数据;
2、根据一个模板创建使用对象(相同属性);
执行过程:
类对象指针 ——> 通过指针找到类,类中找方法,方法执行(对象中隐含着类中的指针 ==> 关联)
二、继承
继承,面向对象中的继承和现实生活中的继承相同,即:子可以继承父的内容。
例如:
猫可以:喵喵叫、吃、喝、拉、撒
狗可以:汪汪叫、吃、喝、拉、撒
如果我们要分别为猫和狗创建一个类,那么就需要为 猫 和 狗 实现他们所有的功能,如下所示:
# 伪代码
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
class 猫: def 喵喵叫(self): print '喵喵叫' def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do somethingclass 狗: def 汪汪叫(self): print '喵喵叫' def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something |
上述代码不难看出,吃、喝、拉、撒是猫和狗都具有的功能,而我们却分别的猫和狗的类中编写了两次。如果使用 继承 的思想,如下实现:
动物:吃、喝、拉、撒
猫:喵喵叫(猫继承动物的功能)
狗:汪汪叫(狗继承动物的功能)
# 伪代码
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
class 动物: def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something# 在类后面括号中写入另外一个类名,表示当前类继承另外一个类class 猫(动物): def 喵喵叫(self): print '喵喵叫' # 在类后面括号中写入另外一个类名,表示当前类继承另外一个类class 狗(动物): def 汪汪叫(self): print '喵喵叫' |
# 代码实例
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
class Animal: def eat(self): print "%s 吃 " %self.name def drink(self): print "%s 喝 " %self.name def shit(self): print "%s 拉 " %self.name def pee(self): print "%s 撒 " %self.nameclass Cat(Animal): def __init__(self, name): self.name = name self.breed = '猫' def cry(self): print '喵喵叫'class Dog(Animal): def __init__(self, name): self.name = name self.breed = '狗' def cry(self): print '汪汪叫'# ######### 执行 #########c1 = Cat('小白家的小黑猫')c1.eat()c2 = Cat('小黑的小白猫')c2.drink()d1 = Dog('胖子家的小瘦狗')d1.eat() |
所以,对于面向对象的继承来说,其实就是将多个类共有的方法提取到父类中,子类仅需继承父类而不必一一实现每个方法。
PS:除了子类和父类的称谓,你可能看到过 派生类 和 基类 ,他们与子类和父类只是叫法不同而已。

学习了继承的写法之后,我们用代码来是上述阿猫阿狗的功能:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
class Animal: def eat(self): print "%s 吃 " %self.name def drink(self): print "%s 喝 " %self.name def shit(self): print "%s 拉 " %self.name def pee(self): print "%s 撒 " %self.nameclass Cat(Animal): def __init__(self, name): self.name = name self.breed = '猫' def cry(self): print '喵喵叫'class Dog(Animal): def __init__(self, name): self.name = name self.breed = '狗' def cry(self): print '汪汪叫' # ######### 执行 #########c1 = Cat('小白家的小黑猫')c1.eat()c2 = Cat('小黑的小白猫')c2.drink()d1 = Dog('胖子家的小瘦狗')d1.eat() |
那么问题又来了,多继承呢?
- 是否可以继承多个类
- 如果继承的多个类每个类中都定了相同的函数,那么那一个会被使用呢?
1、Python的类可以继承多个类,Java和C#中则只能继承一个类
2、Python的类如果继承了多个类,那么其寻找方法的方式有两种,分别是:深度优先 和 广度优先

- 当类是经典类时,多继承情况下,会按照深度优先方式查找
- 当类是新式类时,多继承情况下,会按照广度优先方式查找
经典类和新式类,从字面上可以看出一个老一个新,新的必然包含了跟多的功能,也是之后推荐的写法,从写法上区分的话,如果 当前类或者父类继承了object类,那么该类便是新式类,否则便是经典类。


# 经典类多继承
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
class D: def bar(self): print 'D.bar'class C(D): def bar(self): print 'C.bar'class B(D): def bar(self): print 'B.bar'class A(B, C): def bar(self): print 'A.bar' a = A()# 执行bar方法时# 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错# 所以,查找顺序:A --> B --> D --> C# 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了a.bar() |
# 新式类多继承
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
class D(object): def bar(self): print 'D.bar'class C(D): def bar(self): print 'C.bar'class B(D): def bar(self): print 'B.bar'class A(B, C): def bar(self): print 'A.bar'a = A()# 执行bar方法时# 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错# 所以,查找顺序:A --> B --> C --> D# 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了a.bar() |
经典类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错。
新式类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错。
注意:在上述查找过程中,一旦找到,则寻找过程立即中断,便不会再继续找了。
小结:
继承:只跟类有关系;
父类、子类
基类、派生类
函数式 ==> 函数式面向对象(低级)经典类 ==> 函数式面向对象(添加新功能)新式类(直接或间接继承)
java,c#:只能继承一个类,不能继承多个类
python,ruby,php:多继承支持——>
广度(横向)优先(新式类):离谁越近就先找谁
深度(纵向)优先(经典类)
一个类D继承了多个类A,B,C,对于新式类来说,对于类中的同一功能,寻找顺序为:C,B,A
深度优先则顺序为:A,B,C
三、多态
Pyhon不支持多态并且也用不到多态,多态的概念是应用于Java和C#这一类强类型语言中,而Python崇尚“鸭子类型”。
# python伪代码实现java或c#的多态
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
class F1: passclass S1(F1): def show(self): print 'S1.show'class S2(F1): def show(self): print 'S2.show'# 由于在Java或C#中定义函数参数时,必须指定参数的类型# 为了让Func函数既可以执行S1对象的show方法,又可以执行S2对象的show方法,所以,定义了一个S1和S2类的父类# 而实际传入的参数是:S1对象和S2对象def Func(F1 obj): """Func函数需要接收一个F1类型或者F1子类的类型""" print obj.show()s1_obj = S1()Func(s1_obj) # 在Func函数中传入S1类的对象 s1_obj,执行 S1 的show方法,结果:S1.shows2_obj = S2()Func(s2_obj) # 在Func函数中传入Ss类的对象 ss_obj,执行 Ss 的show方法,结果:S2.show |
# python “鸭子类型”
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class F1: passclass S1(F1): def show(self): print 'S1.show'class S2(F1): def show(self): print 'S2.show'def Func(obj): print obj.show()s1_obj = S1()Func(s1_obj)s2_obj = S2()Func(s2_obj) |
基础知识总结:
- 面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 的使用
- 类 是一个模板,模板中包装了多个“函数”供使用
- 对象,根据模板创建的实例(即:对象),实例用于调用被包装在类中的函数
- 面向对象三大特性:封装、继承和多态
问答专区
问题一:什么样的代码才是面向对象?
答:从简单来说,如果程序中的所有功能都是用 类 和 对象 来实现,那么就是面向对象编程了。
问题二:函数式编程 和 面向对象 如何选择?分别在什么情况下使用?
答:须知:对于 C# 和 Java 程序员来说不存在这个问题,因为该两门语言只支持面向对象编程(不支持函数式编程)。而对于 Python 和 PHP 等语言却同时支持两种编程方式,且函数式编程能完成的操作,面向对象都可以实现;而面向对象的能完成的操作,函数式编程不行(函数式编程无法实现面向对象的封装功能)。
所以,一般在Python开发中,全部使用面向对象 或 面向对象和函数式混合使用。
面向对象的应用场景:
1. 多函数需使用共同的值,如:数据库的增、删、改、查操作都需要连接数据库字符串、主机名、用户名和密码。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
class SqlHelper: def __init__(self, host, user, pwd): self.host = host self.user = user self.pwd = pwd def 增(self): # 使用主机名、用户名、密码(self.host 、self.user 、self.pwd)打开数据库连接 # do something # 关闭数据库连接 def 删(self): # 使用主机名、用户名、密码(self.host 、self.user 、self.pwd)打开数据库连接 # do something # 关闭数据库连接 def 改(self): # 使用主机名、用户名、密码(self.host 、self.user 、self.pwd)打开数据库连接 # do something # 关闭数据库连接 def 查(self): # 使用主机名、用户名、密码(self.host 、self.user 、self.pwd)打开数据库连接 # do something # 关闭数据库连接# do something |
2. 需要创建多个事物,每个事物属性个数相同,但是值的需求
如:张三、李四、杨五,他们都有姓名、年龄、血型,但其都是不相同。即:属性个数相同,但值不相同。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
class Person: def __init__(self, name ,age ,blood_type): self.name = name self.age = age self.blood_type = blood_type def detail(self): temp = "i am %s, age %s , blood type %s " % (self.name, self.age, self.blood_type) print tempzhangsan = Person('张三', 18, 'A')lisi = Person('李四', 73, 'AB')yangwu = Person('杨五', 84, 'A') |
问题三:类和对象在内存中是如何保存?
答:类以及类中的方法在内存中只有一份,而根据类创建的每一个对象都在内存中需要存一份,大致如下图:

如上图所示,根据类创建对象时,对象中除了封装 name 和 age 的值之外,还会保存一个类对象指针,该值指向当前对象的类。
当通过 obj1 执行 【方法一】 时,过程如下:
1. 根据当前对象中的 类对象指针 找到类中的方法
2. 将对象 obj1 当作参数传给 方法的第一个参数 self
进阶篇
类的成员
类的成员可以分为三大类:字段、方法和属性。

PS:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段。而其他的成员,则都是保存在类中,即:无论对象的多少,在内存中只创建一份。
一、字段
字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同,
- 普通字段属于对象
- 静态字段属于类
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# 字段的定义和使用class Province: # 静态字段 country = '中国' def __init__(self, name): # 普通字段 self.name = name# 直接访问普通字段obj = Province('河北省')print obj.name# 直接访问静态字段Province.country |
由上述代码可以看出【普通字段需要通过对象来访问】【静态字段通过类访问】,在使用上可以看出普通字段和静态字段的归属是不同的。其在内容的存储方式类似如下图:

由上图可知:
- 静态字段在内存中只保存一份
- 普通字段在每个对象中都要保存一份
应用场景: 通过类创建对象时,如果每个对象都具有相同的字段,那么就使用静态字段
PS:普通字段——保存在对象中
静态字段——保存在类中
二、方法
方法包括:普通方法、静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同。
- 普通方法:由对象调用;至少一个self参数;执行普通方法时,自动将调用该方法的对象赋值给self;
- 类方法:由类调用; 至少一个cls参数;执行类方法时,自动将调用该方法的类复制给cls;
- 静态方法:由类调用;无默认参数;
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
# 方法的定义和使用class Foo: def __init__(self, name): self.name = name def ord_func(self): """ 定义普通方法,至少有一个self参数 """ # print self.name print '普通方法' @classmethod def class_func(cls): """ 定义类方法,至少有一个cls参数 """ print '类方法' @staticmethod def static_func(): """ 定义静态方法 ,无默认参数""" print '静态方法'# 调用普通方法f = Foo()f.ord_func()# 调用类方法Foo.class_func()# 调用静态方法Foo.static_func() |

相同点:对于所有的方法而言,均属于类(非对象)中,所以,在内存中也只保存一份。
不同点:方法调用者不同、调用方法时自动传入的参数不同。
PS:普通方法——对象触发,至少一个self参数
类方法——类调用,只能一个cls参数 ==> 无需创建对象
静态方法——类调用,无默认参数 ==> 类+静态方法=函数(节省内存),不用单独创建内存
三、属性
如果你已经了解Python类中的方法,那么属性就非常简单了,因为Python中的属性其实是普通方法的变种。
对于属性,有以下三个知识点:
- 属性的基本使用
- 属性的两种定义方式
1、 属性的基本使用
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# 属性的定义和使用# ############### 定义 ###############class Foo: def func(self): pass # 定义属性 @property def prop(self): pass# ############### 调用 ###############foo_obj = Foo()foo_obj.func()foo_obj.prop #调用属性 |

由属性的定义和调用要注意一下几点:
- 定义时,在普通方法的基础上添加 @property 装饰器;
- 定义时,属性仅有一个self参数
- 调用时,无需括号
方法:foo_obj.func()
属性:foo_obj.prop
注意:属性存在意义是:访问属性时可以制造出和访问字段完全相同的假象。
属性由方法变种而来,如果Python中没有属性,方法完全可以代替其功能。
实例:对于主机列表页面,每次请求不可能把数据库中的所有内容都显示到页面上,而是通过分页的功能局部显示,所以在向数据库中请求数据时就要显示的指定获取从第m条到第n条的所有数据(即:limit m,n),这个分页的功能包括:
- 根据用户请求的当前页和总数据条数计算出 m 和 n
- 根据m 和 n 去数据库中请求数据
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
# ############### 定义 ###############class Pager: def __init__(self, current_page): # 用户当前请求的页码(第一页、第二页...) self.current_page = current_page # 每页默认显示10条数据 self.per_items = 10 @property def start(self): val = (self.current_page - 1) * self.per_items return val @property def end(self): val = self.current_page * self.per_items return val# ############### 调用 ###############p = Pager(1)p.start 就是起始值,即:mp.end 就是结束值,即:n |
从上述可见,Python的属性的功能是:属性内部进行一系列的逻辑计算,最终将计算结果返回。
2、属性的两种定义方式
属性的定义有两种方式:
- 装饰器 即:在方法上应用装饰器
- 静态字段 即:在类中定义值为property对象的静态字段
装饰器方式:在类的普通方法上应用@property装饰器
我们知道Python中的类有经典类和新式类,新式类的属性比经典类的属性丰富。( 如果类继object,那么该类是新式类 )
经典类,具有一种@property装饰器(如上一步实例)
|
1
2
3
4
5
6
7
8
|
# ############### 定义 ############### class Goods: @property def price(self): return "wupeiqi"# ############### 调用 ###############obj = Goods()result = obj.price # 自动执行 @property 修饰的 price 方法,并获取方法的返回值 |
新式类,具有三种@property装饰器
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# ############### 定义 ###############class Goods(object): @property def price(self): print '@property' @price.setter def price(self, value): print '@price.setter' @price.deleter def price(self): print '@price.deleter'# ############### 调用 ###############obj = Goods()obj.price # 自动执行 @property 修饰的 price 方法,并获取方法的返回值obj.price = 123 # 自动执行 @price.setter 修饰的 price 方法,并将 123 赋值给方法的参数del obj.price # 自动执行 @price.deleter 修饰的 price 方法 |
注:经典类中的属性只有一种访问方式,其对应被 @property 修饰的方法
新式类中的属性有三种访问方式,并分别对应了三个被@property、@方法名.setter、@方法名.deleter修饰的方法
由于新式类中具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除
# 实例
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
class Goods(object): def __init__(self): # 原价 self.original_price = 100 # 折扣 self.discount = 0.8 @property def price(self): # 实际价格 = 原价 * 折扣 new_price = self.original_price * self.discount return new_price @price.setter def price(self, value): self.original_price = value @price.deltter def price(self, value): del self.original_priceobj = Goods()obj.price # 获取商品价格obj.price = 200 # 修改商品原价del obj.price # 删除商品原价 |
静态字段方式,创建值为property对象的静态字段
当使用静态字段的方式创建属性时,经典类和新式类无区别
|
1
2
3
4
5
6
7
8
9
|
class Foo: def get_bar(self): return 'wupeiqi' BAR = property(get_bar)obj = Foo()reuslt = obj.BAR # 自动调用get_bar方法,并获取方法的返回值print reuslt |
property的构造方法中有个四个参数
- 第一个参数是方法名,调用 对象.属性 时自动触发执行方法
- 第二个参数是方法名,调用 对象.属性 = XXX 时自动触发执行方法
- 第三个参数是方法名,调用 del 对象.属性 时自动触发执行方法
- 第四个参数是字符串,调用 对象.属性.__doc__ ,此参数是该属性的描述信息
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class Foo: def get_bar(self): return 'wxy' # *必须两个参数 def set_bar(self, value): return return 'set value' + value def del_bar(self): return 'wxy' BAR = property(get_bar, set_bar, del_bar, 'description...')obj = Foo()obj.BAR # 自动调用第一个参数中定义的方法:get_barobj.BAR = "korala" # 自动调用第二个参数中定义的方法:set_bar方法,并将“korala”当作参数传入del Foo.BAR # 自动调用第三个参数中定义的方法:del_bar方法obj.BAE.__doc__ # 自动获取第四个参数中设置的值:description... |
由于静态字段方式创建属性具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
class Goods(object): def __init__(self): # 原价 self.original_price = 100 # 折扣 self.discount = 0.8 def get_price(self): # 实际价格 = 原价 * 折扣 new_price = self.original_price * self.discount return new_price def set_price(self, value): self.original_price = value def del_price(self, value): del self.original_price PRICE = property(get_price, set_price, del_price, '价格属性描述...')obj = Goods()obj.PRICE # 获取商品价格obj.PRICE = 200 # 修改商品原价del obj.PRICE # 删除商品原价 |
注意:Python WEB框架 Django 的视图中 request.POST 就是使用的静态字段的方式创建的属性。
# Django源码
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
class WSGIRequest(http.HttpRequest): def __init__(self, environ): script_name = get_script_name(environ) path_info = get_path_info(environ) if not path_info: # Sometimes PATH_INFO exists, but is empty (e.g. accessing # the SCRIPT_NAME URL without a trailing slash). We really need to # operate as if they'd requested '/'. Not amazingly nice to force # the path like this, but should be harmless. path_info = '/' self.environ = environ self.path_info = path_info self.path = '%s/%s' % (script_name.rstrip('/'), path_info.lstrip('/')) self.META = environ self.META['PATH_INFO'] = path_info self.META['SCRIPT_NAME'] = script_name self.method = environ['REQUEST_METHOD'].upper() _, content_params = cgi.parse_header(environ.get('CONTENT_TYPE', '')) if 'charset' in content_params: try: codecs.lookup(content_params['charset']) except LookupError: pass else: self.encoding = content_params['charset'] self._post_parse_error = False try: content_length = int(environ.get('CONTENT_LENGTH')) except (ValueError, TypeError): content_length = 0 self._stream = LimitedStream(self.environ['wsgi.input'], content_length) self._read_started = False self.resolver_match = None def _get_scheme(self): return self.environ.get('wsgi.url_scheme') def _get_request(self): warnings.warn('`request.REQUEST` is deprecated, use `request.GET` or ' '`request.POST` instead.', RemovedInDjango19Warning, 2) if not hasattr(self, '_request'): self._request = datastructures.MergeDict(self.POST, self.GET) return self._request @cached_property def GET(self): # The WSGI spec says 'QUERY_STRING' may be absent. raw_query_string = get_bytes_from_wsgi(self.environ, 'QUERY_STRING', '') return http.QueryDict(raw_query_string, encoding=self._encoding) # ############### 看这里看这里 ############### def _get_post(self): if not hasattr(self, '_post'): self._load_post_and_files() return self._post # ############### 看这里看这里 ############### def _set_post(self, post): self._post = post @cached_property def COOKIES(self): raw_cookie = get_str_from_wsgi(self.environ, 'HTTP_COOKIE', '') return http.parse_cookie(raw_cookie) def _get_files(self): if not hasattr(self, '_files'): self._load_post_and_files() return self._files # ############### 看这里看这里 ############### POST = property(_get_post, _set_post) FILES = property(_get_files) REQUEST = property(_get_request) |
所以,定义属性共有两种方式,分别是【装饰器】和【静态字段】,而【装饰器】方式针对经典类和新式类又有所不同。
小结:
属性:将方法伪造成字段
定义方式:
装饰器 即:在方法上应用装饰器 @property
静态字段 即:在类中定义值为property对象的静态字段
新式类属性可以设置读写删;
类成员的修饰符
类的所有成员在上一步骤中已经做了详细的介绍,对于每一个类的成员而言都有两种形式:
- 公有成员,在任何地方都能访问
- 私有成员,只有在类的内部才能方法
私有成员和公有成员的定义不同:私有成员命名时,前两个字符是下划线。(特殊成员除外,例如:__init__、__call__、__dict__等)
|
1
2
3
4
|
class C: def __init__(self): self.name = '公有字段' self.__foo = "私有字段" |
静态字段
- 公有静态字段:类可以访问;类内部可以访问;派生类中可以访问
- 私有静态字段:仅类内部可以访问;
# 公有静态字段
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class C:name = "公有静态字段" def func(self): print C.nameclass D(C): def show(self): print C.nameC.name # 类访问obj = C()obj.func() # 类内部可以访问obj_son = D()obj_son.show() # 派生类中可以访问 |
# 私有静态字段
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class C: __name = "私有静态字段" def func(self): print C.__nameclass D(C): def show(self): print C.__nameC.__name # 类访问 ==> 错误obj = C()obj.func() # 类内部可以访问 ==> 正确obj_son = D()obj_son.show() # 派生类中可以访问 ==> 错误 |
普通字段
- 公有普通字段:对象可以访问;类内部可以访问;派生类中可以访问
- 私有普通字段:仅类内部可以访问;
ps:如果想要强制访问私有字段,可以通过 【对象._类名__私有字段明 】访问(如:obj._C__foo),不建议强制访问私有成员。
# 公有字段
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
class C: def __init__(self): self.foo = "公有字段" def func(self): print self.foo # 类内部访问class D(C): def show(self): print self.foo # 派生类中访问obj = C()obj.foo # 通过对象访问obj.func() # 类内部访问obj_son = D();obj_son.show() # 派生类中访问 |
# 私有字段
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
class C: def __init__(self): self.__foo = "私有字段" def func(self): print self.foo # 类内部访问class D(C): def show(self): print self.foo # 派生类中访问obj = C()obj.__foo # 通过对象访问 ==> 错误obj.func() # 类内部访问 ==> 正确obj_son = D();obj_son.show() # 派生类中访问 ==> 错误 |
方法、属性的访问于上述方式相似,即:私有成员只能在类内部使用
ps:非要访问私有属性的话,可以通过 对象._类__属性名
类的特殊成员
上文介绍了Python的类成员以及成员修饰符,从而了解到类中有字段、方法和属性三大类成员,并且成员名前如果有两个下划线,则表示该成员是私有成员,私有成员只能由类内部调用。无论人或事物往往都有不按套路出牌的情况,Python的类成员也是如此,存在着一些具有特殊含义的成员,详情如下:
1. __doc__
表示类的描述信息。
|
1
2
3
4
5
6
7
|
class Foo: """ 描述类信息,这是用于看片的神奇 """ def func(self): passprint Foo.__doc__#输出:类的描述信息 |
2. __module__ 和 __class__
__module__ 表示当前操作的对象在那个模块
__class__ 表示当前操作的对象的类是什么
# lib/aa.py
# index.py
|
1
2
3
4
5
|
from lib.aa import Cobj = C()print obj.__module__ # 输出 lib.aa,即:输出模块print obj.__class__ # 输出 lib.aa.C,即:输出类 |
3. __init__
构造方法,通过类创建对象时,自动触发执行。
|
1
2
3
4
5
6
|
class Foo: def __init__(self, name): self.name = name self.age = 18obj = Foo('wupeiqi') # 自动执行类中的 __init__ 方法 |
4. __del__
析构方法,当对象在内存中被释放时,自动触发执行。
注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。
|
1
2
3
|
class Foo: def __del__(self): pass |
5. __call__
对象后面加括号,触发执行。
注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()
|
1
2
3
4
5
6
7
8
9
|
class Foo: def __init__(self): pass def __call__(self, *args, **kwargs): print '__call__'obj = Foo() # 执行 __init__obj() # 执行 __call__ |
6. __dict__
类或对象中的所有成员
上文中我们知道:类的普通字段属于对象;类中的静态字段和方法等属于类,即:

|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
class Province: country = 'China' def __init__(self, name, count): self.name = name self.count = count def func(self, *args, **kwargs): print 'func'# 获取类的成员,即:静态字段、方法、print Province.__dict__# 输出:{'country': 'China', '__module__': '__main__', 'func': <function func at 0x10be30f50>, '__init__': <function __init__ at 0x10be30ed8>, '__doc__': None}obj1 = Province('HeBei',10000)print obj1.__dict__# 获取 对象obj1 的成员# 输出:{'count': 10000, 'name': 'HeBei'}obj2 = Province('HeNan', 3888)print obj2.__dict__# 获取 对象obj1 的成员# 输出:{'count': 3888, 'name': 'HeNan'} |
7. __str__
如果一个类中定义了__str__方法,那么在打印 对象 时,默认输出该方法的返回值。
|
1
2
3
4
5
6
7
|
class Foo: def __str__(self): return 'korala'obj = Foo()print obj# 输出korala |
8、__getitem__、__setitem__、__delitem__
用于索引操作,如字典。以上分别表示获取、设置、删除数据。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#!/usr/bin/env python# -*- coding:utf-8 -*- class Foo(object): def __getitem__(self, key): print '__getitem__',key def __setitem__(self, key, value): print '__setitem__',key,value def __delitem__(self, key): print '__delitem__',key obj = Foo() result = obj['k1'] # 自动触发执行 __getitem__obj['k2'] = 'korala' # 自动触发执行 __setitem__del obj['k1'] # 自动触发执行 __delitem__ |
9、__getslice__、__setslice__、__delslice__
该三个方法用于分片操作,如:列表。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#!/usr/bin/env python# -*- coding:utf-8 -*- class Foo(object): def __getslice__(self, i, j): print '__getslice__',i,j def __setslice__(self, i, j, sequence): print '__setslice__',i,j def __delslice__(self, i, j): print '__delslice__',i,j obj = Foo() obj[-1:1] # 自动触发执行 __getslice__obj[0:1] = [11,22,33,44] # 自动触发执行 __setslice__del obj[0:2] # 自动触发执行 __delslice__ |
10. __iter__
用于迭代器,之所以列表、字典、元组可以进行for循环,是因为类型内部定义了 __iter__。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
# 第一步class Foo(object): pass obj = Foo()for i in obj: print i # 报错:TypeError: 'Foo' object is not iterable# 第二步#!/usr/bin/env python# -*- coding:utf-8 -*-class Foo(object): def __iter__(self): passobj = Foo()for i in obj: print i# 报错:TypeError: iter() returned non-iterator of type 'NoneType'# 第三步#!/usr/bin/env python# -*- coding:utf-8 -*-class Foo(object): def __init__(self, sq): self.sq = sq def __iter__(self): return iter(self.sq)obj = Foo([11,22,33,44])for i in obj: print i |
以上步骤可以看出,for循环迭代的其实是 iter([11,22,33,44]) ,所以执行流程可以变更为:
|
1
2
3
4
5
6
|
#!/usr/bin/env python# -*- coding:utf-8 -*- obj = iter([11,22,33,44])for i in obj: print i |
11. __new__ 和 __metaclass__
阅读以下代码:
|
1
2
3
4
|
class Foo(object): def __init__(self): passobj = Foo() # obj是通过Foo类实例化的对象 |
上述代码中,obj 是通过 Foo 类实例化的对象,其实,不仅 obj 是一个对象,Foo类本身也是一个对象,因为在Python中一切事物都是对象。
如果按照一切事物都是对象的理论:obj对象是通过执行Foo类的构造方法创建,那么Foo类对象应该也是通过执行某个类的 构造方法 创建。
|
1
2
|
print type(obj) # 输出:<class '__main__.Foo'> 表示,obj 对象由Foo类创建print type(Foo) # 输出:<type 'type'> 表示,Foo类对象由 type 类创建 |
所以,obj对象是Foo类的一个实例,Foo类对象是 type 类的一个实例,即:Foo类对象 是通过type类的构造方法创建。
那么,创建类就可以有两种方式:
a). 普通方式
|
1
2
3
|
class Foo(object): def func(self): print 'hello korala' |
b).特殊方式(type类的构造函数)
|
1
2
3
4
5
6
7
|
ef func(self): print 'hello korala' Foo = type('Foo',(object,), {'func': func})#type第一个参数:类名#type第二个参数:当前类的基类#type第三个参数:类的成员<span style="font-family: 宋体; font-size: 16px; color: #ff0000;"><strong> </strong></span> |
==》 类 是由 type 类实例化产生
那么问题来了,类默认是由 type 类实例化产生,type类中如何实现的创建类?类又是如何创建对象?
答:类中有一个属性 __metaclass__,其用来表示该类由 谁 来实例化创建,所以,我们可以为 __metaclass__ 设置一个type类的派生类,从而查看 类 创建的过程。

|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
class MyType(type): def __init__(self, what, bases=None, dict=None): super(MyType, self).__init__(what, bases, dict) def __call__(self, *args, **kwargs): obj = self.__new__(self, *args, **kwargs) self.__init__(obj)class Foo(object): __metaclass__ = MyType def __init__(self, name): self.name = name def __new__(cls, *args, **kwargs): return object.__new__(cls, *args, **kwargs)# 第一阶段:解释器从上到下执行代码创建Foo类# 第二阶段:通过Foo类创建obj对象obj = Foo() |
总结:
1、面向对象的三大特性
封装、继承、多态(用不到)
2、python ——> 封装
两种情况:(1)多个方法共用一组变量,变量封装到对象中;
(2)游戏 模板
3、继承
(1)基类、派生类
(2)多继承
新式类、经典类
广度优先(规则)、深度优先 ==> 面试
4、类,对象,内存 ==> 关系图
5、类成员
字段:普通(对象)、静态(类)
方法:普通(对象触发)至少一个self,self=当前对象
类 ==> 类触发 只有一个cls,cls=当前类
静态 ==> 类触发 任意参数
属性:方法的变种,变成访问时跟字段相似
定义方式:@property
data = property(方法名)
# obj.data = 执行方法,并获取方法的返回值
新式类中的属性:
@property 修改
@方法名.setter 设置
@方法名.deleter 删除
6、类成员修饰符
公有
私有 以"__"开头,只能内部访问
非要访问,对象._类名__成员
7、对象后面加括号执行__call__方法,类后面加括号执行__init__方法
8、__dict__ 类或对象中的所有成员
对象由类创建,一切事物都是对象 ==> 类也是对象
对象.__dict__ 查看对象里有什么东西
类.__dict__ 查看类里有什么东西
9、__str__
输出时会输出返回值
对象转成字符串,类里找方法,并获取返回值

浙公网安备 33010602011771号