【分布式协议】常见的分布式互斥算法
一、分布式互斥概念
分布式互斥:对于同一共享资源,一个程序正在使用的时候也不希望被其他程序打扰。这,就要求同一时刻只能有一个程序能够访问这种资源。在分布式系统里,这种排他性的资源访问方式,叫作分布式互斥。
临界资源:被互斥访问的共享资源

二、分布式互斥常见算法
1、霸道总裁-集中式算法
原理:
引入一个协调者程序,得到一个分布式互斥算法。
每个程序在需要访问临界资源时,先给协调者发送一个请求。如果当前没有程序使用这个资源,协调者直接授权请求程序访问;否则,按照先来后到的顺序为请求程序“排一个号”。
如果有程序使用完资源,则通知协调者,协调者从“排号”的队列里取出排在最前面的请求,并给它发送授权消息。拿到授权消息的程序,可以直接去访问临界资源。

优点:
- 具有简单、易于实现的特点
缺点:
- 可用性、性能易受协调者影响(服务器计算能力强、性能高、故障率低,或者中央服务器进行了主备,主故障后备可以立马升为主,且数据可恢复的情况下,集中式算法可以适用于比较广泛的应用场景)
2、民主协商-分布式算法
原理:
当一个程序要访问临界资源时,先向系统中的其他程序发送一条请求消息,在接收到所有程序返回的同意消息后,才可以访问临界资源。其中,请求消息需要包含所请求的资源、请求者的 ID,以及发起请求的时间。

如图所示,程序 1、2、3 需要访问共享资源 A。在时间戳为 8 的时刻,程序 1 想要使用资源 A,于是向程序 2 和 3 发起使用资源 A 的申请,希望得到它们的同意。在时间戳为 12 的时刻,程序 3 想要使用资源 A,于是向程序 1 和 2 发起访问资源 A 的请求。

图所示,此时程序 2 暂时不访问资源 A,因此同意了程序 1 和 3 的资源访问请求。对于程序 3 来说,由于程序 1 提出请求的时间更早,因此同意程序 1 先使用资源,并等待程序 1 返回同意消息。

程序 1 接收到其他所有程序的同意消息之后,开始使用资源 A。当程序 1 使用完资源 A 后,释放使用权限,向请求队列中需要使用资源 A 的程序 3 发送同意使用资源的消息,并将程序 3 从请求队列中删除。此时,程序 3 收到了其他所有程序的同意消息,获得了使用资源 A 的权限,开始使用临界资源 A 的旅程。
从上述分析不难看出,分布式算法根据“先到先得”以及“投票全票通过”的机制,让每个程序按时间顺序公平地访问资源,简单粗暴、易于实现。但,这个算法可用性很低,主要包括两个方面的原因
1、当系统内需要访问临界资源的程序增多时,容易产生“信令风暴”,也就是程序收到的请求完全超过了自己的处理能力,而导致自己正常的业务无法开展。
2、一旦某一程序发生故障,无法发送同意消息,那么其他程序均处在等待回复的状态中,使得整个系统处于停滞状态,导致整个系统不可用。所以,相对于集中式算法的协调者故障,分布式算法的可用性更低。
可用性低的一种改进办法是,如果检测到一个程序故障,则直接忽略这个程序,无需再等待它的同意消息。每个程序都需要对其他程序进行故障检测,这无疑带来了更大的复杂性。
分布式算法的应用场景
分布式算法适合节点数目少且变动不频繁的系统,且由于每个程序均需通信交互,因此适合 P2P 结构的系统。
Hadoop 是我们非常熟悉的分布式系统,其中的分布式文件系统 HDFS 的文件修改就是一个典型的应用分布式算法的场景。

3、轮值ceo-令牌环算法
原理:
所有程序构成一个环结构,令牌按照顺时针(或逆时针)方向在程序之间传递,收到令牌的程序有权访问临界资源,访问完成后将令牌传送到下一个程序;若该程序不需要访问临界资源,则直接把令牌传送给下一个程序。

优点:
使用临界资源前,不需要像分布式算法那样挨个征求其他程序的意见了,所以相对而言,在令牌环算法里单个程序具有更高的通信效率。同时,在一个周期内,每个程序都能访问到临界资源,因此令牌环算法的公平性很好。
缺点:
实时性低:不管环中的程序是否想要访问资源,都需要接收并传递令牌,所以也会带来一些无效通信。假设系统中有 100 个程序,那么程序 1 访问完资源后,即使其它 99 个程序不需要访问,也必须要等令牌在其他 99 个程序传递完后,才能重新访问资源,这就降低了系统的实时性。
浙公网安备 33010602011771号