Lock与synchronized 的区别

1、ReentrantLock 拥有Synchronized相同的并发性和内存语义,此外还多了 锁投票,定时锁等候和中断锁等候
线程A和B都要获取对象O的锁定,假设A获取了对象O锁,B将等待A释放对O的锁定,
如果使用 synchronized ,如果A不释放,B将一直等下去,不能被中断
如果 使用ReentrantLock,如果A不释放,可以使B在等待了足够长的时间以后,中断等待,而干别的事情

ReentrantLock获取锁定与三种方式:
a) lock(), 如果获取了锁立即返回,如果别的线程持有锁,当前线程则一直处于休眠状态,直到获取锁
b) tryLock(), 如果获取了锁立即返回true,如果别的线程正持有锁,立即返回false;
c)tryLock(long timeout,TimeUnit unit), 如果获取了锁定立即返回true,如果别的线程正持有锁,会等待参数给定的时间,在等待的过程中,如果获取了锁定,就返回true,如果等待超时,返回false;
d) lockInterruptibly:如果获取了锁定立即返回,如果没有获取锁定,当前线程处于休眠状态,直到或者锁定,或者当前线程被别的线程中断

2、synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中

3、在资源竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍,但是ReetrantLock的性能能维持常态;

5.0的多线程任务包对于同步的性能方面有了很大的改进,在原有synchronized关键字的基础上,又增加了ReentrantLock,以及各种Atomic类。了解其性能的优劣程度,有助与我们在特定的情形下做出正确的选择。

总体的结论先摆出来:

synchronized:
在资源竞争不是很激烈的情况下,偶尔会有同步的情形下,synchronized是很合适的。原因在于,编译程序通常会尽可能的进行优化synchronize,另外可读性非常好,不管用没用过5.0多线程包的程序员都能理解。

ReentrantLock:
ReentrantLock提供了多样化的同步,比如有时间限制的同步,可以被Interrupt的同步(synchronized的同步是不能Interrupt的)等。在资源竞争不激烈的情形下,性能稍微比synchronized差点点。但是当同步非常激烈的时候,synchronized的性能一下子能下降好几十倍。而ReentrantLock确还能维持常态。

Atomic:
和上面的类似,不激烈情况下,性能比synchronized略逊,而激烈的时候,也能维持常态。激烈的时候,Atomic的性能会优于ReentrantLock一倍左右。但是其有一个缺点,就是只能同步一个值,一段代码中只能出现一个Atomic的变量,多于一个同步无效。因为他不能在多个Atomic之间同步。


所以,我们写同步的时候,优先考虑synchronized,如果有特殊需要,再进一步优化。ReentrantLock和Atomic如果用的不好,不仅不能提高性能,还可能带来灾难。

先贴测试结果:再贴代码(Atomic测试代码不准确,一个同步中只能有1个Actomic,这里用了2个,但是这里的测试只看速度)
==========================
round:100000 thread:5
Sync = 35301694
Lock = 56255753
Atom = 43467535
==========================
round:200000 thread:10
Sync = 110514604
Lock = 204235455
Atom = 170535361
==========================
round:300000 thread:15
Sync = 253123791
Lock = 448577123
Atom = 362797227
==========================
round:400000 thread:20
Sync = 16562148262
Lock = 846454786
Atom = 667947183
==========================
round:500000 thread:25
Sync = 26932301731
Lock = 1273354016
Atom = 982564544

package test.thread;

import static java.lang.System.out;

import java.util.Random;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;

public class TestSyncMethods {
	
	public static void test(int round,int threadNum,CyclicBarrier cyclicBarrier){
		new SyncTest("Sync",round,threadNum,cyclicBarrier).testTime();
		new LockTest("Lock",round,threadNum,cyclicBarrier).testTime();
		new AtomicTest("Atom",round,threadNum,cyclicBarrier).testTime();
	}

	public static void main(String args[]){
		
		for(int i=0;i<5;i++){
			int round=100000*(i+1);
			int threadNum=5*(i+1);
			CyclicBarrier cb=new CyclicBarrier(threadNum*2+1);
			out.println("==========================");
			out.println("round:"+round+" thread:"+threadNum);
			test(round,threadNum,cb);
			
		}
	}
}

class SyncTest extends TestTemplate{
	public SyncTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){
		super( _id, _round, _threadNum, _cb);
	}
	@Override
	/**
	 * synchronized关键字不在方法签名里面,所以不涉及重载问题
	 */
	synchronized long  getValue() {
		return super.countValue;
	}
	@Override
	synchronized void  sumValue() {
		super.countValue+=preInit[index++%round];
	}
}


class LockTest extends TestTemplate{
	ReentrantLock lock=new ReentrantLock();
	public LockTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){
		super( _id, _round, _threadNum, _cb);
	}
	/**
	 * synchronized关键字不在方法签名里面,所以不涉及重载问题
	 */
	@Override
	long getValue() {
		try{
			lock.lock();
			return super.countValue;
		}finally{
			lock.unlock();
		}
	}
	@Override
	void sumValue() {
		try{
			lock.lock();
			super.countValue+=preInit[index++%round];
		}finally{
			lock.unlock();
		}
	}
}


class AtomicTest extends TestTemplate{
	public AtomicTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){
		super( _id, _round, _threadNum, _cb);
	}
	@Override
	/**
	 * synchronized关键字不在方法签名里面,所以不涉及重载问题
	 */
    long  getValue() {
		return super.countValueAtmoic.get();
	}
	@Override
	void  sumValue() {
		super.countValueAtmoic.addAndGet(super.preInit[indexAtomic.get()%round]);
	}
}
abstract class TestTemplate{
	private String id;
	protected int round;
	private int threadNum;
	protected long countValue;
	protected AtomicLong countValueAtmoic=new AtomicLong(0);
	protected int[] preInit;
	protected int index;
	protected AtomicInteger indexAtomic=new AtomicInteger(0);
	Random r=new Random(47);
	//任务栅栏,同批任务,先到达wait的任务挂起,一直等到全部任务到达制定的wait地点后,才能全部唤醒,继续执行
	private CyclicBarrier cb;
	public TestTemplate(String _id,int _round,int _threadNum,CyclicBarrier _cb){
		this.id=_id;
		this.round=_round;
		this.threadNum=_threadNum;
		cb=_cb;
		preInit=new int[round];
		for(int i=0;i<preInit.length;i++){
			preInit[i]=r.nextInt(100);
		}
	}
	
	abstract void sumValue();
	/*
	 * 对long的操作是非原子的,原子操作只针对32位
	 * long是64位,底层操作的时候分2个32位读写,因此不是线程安全
	 */
	abstract long getValue();

	public void testTime(){
		ExecutorService se=Executors.newCachedThreadPool();
		long start=System.nanoTime();
		//同时开启2*ThreadNum个数的读写线程
		for(int i=0;i<threadNum;i++){
			se.execute(new Runnable(){
				public void run() {
					for(int i=0;i<round;i++){
						sumValue();
					}

					//每个线程执行完同步方法后就等待
					try {
						cb.await();
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					} catch (BrokenBarrierException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}


				}
			});
			se.execute(new Runnable(){
				public void run() {

					getValue();
					try {
						//每个线程执行完同步方法后就等待
						cb.await();
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					} catch (BrokenBarrierException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}

				}
			});
		}
		
		try {
			//当前统计线程也wait,所以CyclicBarrier的初始值是threadNum*2+1
			cb.await();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} catch (BrokenBarrierException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		//所有线程执行完成之后,才会跑到这一步
		long duration=System.nanoTime()-start;
		out.println(id+" = "+duration);
		
	}

}

  

 

 

 

摘自:

http://houlinyan.iteye.com/blog/1112535

http://zzhonghe.iteye.com/blog/826162

posted @ 2016-08-30 13:56 一万年以前 阅读(...) 评论(...) 编辑 收藏