Python三元表达式、列表生成式、生成器表达式、递归与二分法

目录:

  1. 三元表达式
  2. 列表生成式
  3. 生成器表达式
  4. 递归与二分法

一、三元表达式:

name=input('姓名>>: ')
res='SB' if name == 'test' else 'NB'
print(res)

 

二、列表生成式:

#1、示例
egg_list=[]
for i in range(10):
    egg_list.append('鸡蛋%s' %i)

egg_list=['鸡蛋%s' %i for i in range(10)]

#2、语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
            if condition2
                ...
                for itemN in iterableN:
                    if conditionN:
                        res.append(expression)

#3、优点:方便,改变了编程习惯,可称之为声明式编程

 

三、生成器表达式:

#1、把列表推导式的[]换成()就是生成器表达式

#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
>>> chicken=('鸡蛋%s' %i for i in range(5))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
'鸡蛋0'
>>> list(chicken) #因chicken可迭代,因而可以转成列表
['鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4',]

#3、优点:省内存,一次只产生一个值在内存中
1、将names=['egon','alex_sb','wupeiqi','yuanhao']中的名字全部变大写
2、将names=['egon','alex_sb','wupeiqi','yuanhao']中以sb结尾的名字过滤掉,然后保存剩下的名字长度
3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)
4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)

5、思考题
with open('a.txt') as f:
    g=(len(line) for line in f)
print(sum(g)) #为何报错?

6、文件shopping.txt内容如下
mac,20000,3
lenovo,3000,10
tesla,1000000,10
chicken,200,1

# 求总共花了多少钱?
# 打印出所有商品的信息,格式为[{'name':'xxx','price':333,'count':3},...]
# 求单价大于10000的商品信息,格式同上

#题目一
names=['egon','alex_sb','wupeiqi','yuanhao']
names=[name.upper() for name in names]

#题目二
names=['egon','alex_sb','wupeiqi','yuanhao']
names=[len(name) for name in names if not name.endswith('sb')]

#题目三
with open('a.txt',encoding='utf-8') as f:
    print(max(len(line) for line in f))

#题目四
with open('a.txt', encoding='utf-8') as f:
    print(sum(len(line) for line in f))
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?

#题目五(略)
#题目六:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了
with open('a.txt',encoding='utf-8') as f:
    info=[line.split() for line in f]
    cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)
    print(cost)

with open('a.txt',encoding='utf-8') as f:
    info=[{
        'name': line.split()[0],
        'price': float(line.split()[1]),
        'count': int(line.split()[2]),
    } for line in f]
    print(info)

with open('a.txt',encoding='utf-8') as f:
    info=[{
        'name': line.split()[0],
        'price': float(line.split()[1]),
        'count': int(line.split()[2]),
    } for line in f if float(line.split()[1]) > 10000]
    print(info)
练习

 

四、递归与二分法: 

1、递归调用的定义

#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
#直接调用本身
def f1():
    print('from f1')
    f1()
f1()

#间接调用本身
def f1():
    print('from f1')
    f2()

def f2():
    print('from f2')
    f1()
f1()

# 调用函数会产生局部的名称空间,占用内存,因为上述这种调用会无需调用本身,python解释器的内存管理机制为了防止其无限制占用内存,对函数的递归调用做了最大的层级限制
四 可以修改递归最大深度

import sys
sys.getrecursionlimit()
sys.setrecursionlimit(2000)

def f1(n):
    print('from f1',n)
    f1(n+1)
f1(1)

虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归,而且无限制地递归调用本身是毫无意义的,递归应该分为两个明确的阶段,回溯与递推
详解

2、递归调用应该分为两个明确的阶段: 递推  回溯

#1、递归调用应该包含两个明确的阶段:回溯,递推
    回溯就是从外向里一层一层递归调用下去,
        回溯阶段必须要有一个明确地结束条件,每进入下一次递归时,问题的规模都应该有所减少(否则,单纯地重复调用自身是毫无意义的)

    递推就是从里向外一层一层结束递归

#2、示例+图解。。。
# salary(5)=salary(4)+300
# salary(4)=salary(3)+300
# salary(3)=salary(2)+300
# salary(2)=salary(1)+300
# salary(1)=100
#
# salary(n)=salary(n-1)+300     n>1
# salary(1) =100                n=1

def salary(n):
    if n == 1:
        return 100
    return salary(n-1)+300

print(salary(5))

3、Python中的递归效率低并且没有尾递归优化

#python中的递归
python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475
但是python又没有尾递归,且对递归层级做了限制

#总结递归的使用:
1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出

4、二分法

想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模

l=[1,2,10,30,33,99,101,200,301,311,402,403,500,900,1000] #从小到大排列的数字列表

def search(n,l):
    print(l)
    if len(l) == 0:
        print('not exists')
        return
    mid_index=len(l) // 2
    if n > l[mid_index]:
        #in the right
        l=l[mid_index+1:]
        search(n,l)
    elif n < l[mid_index]:
        #in the left
        l=l[:mid_index]
        search(n,l)
    else:
        print('find it')


search(3,l)
类似in的效果
l=[1,2,10,30,33,99,101,200,301,402]

def search(num,l,start=0,stop=len(l)-1):
    if start <= stop:
        mid=start+(stop-start)//2
        print('start:[%s] stop:[%s] mid:[%s] mid_val:[%s]' %(start,stop,mid,l[mid]))
        if num > l[mid]:
            start=mid+1
        elif num < l[mid]:
            stop=mid-1
        else:
            print('find it',mid)
            return
        search(num,l,start,stop)
    else: #如果stop > start则意味着列表实际上已经全部切完,即切为空
        print('not exists')
        return

search(301,l)
类似l.index(6)的效果

 

  

 

posted @ 2018-05-17 10:18  黑貓警長  阅读(176)  评论(0编辑  收藏  举报
Life is short, you need Python