598

$\bf命题:$$(\bf{Bellman -Gronwall不等式})$设常数$k > 0$,函数$f,g$
在$\left[ {a,b} \right]$上非负连续,且对任意$x \in \left[ {a,b} \right]$满足\[f\left( x \right) \ge k + \int_a^x {g\left( t \right)f\left( t \right)dt} \]
证明:对任意$x \in \left[ {a,b} \right]$,有$f\left( x \right) \ge k{e^{\int_a^x {g\left( t \right)dt} }}$

证明:设\[h\left( x \right) = k + \int_a^x {g\left( t \right)f\left( t \right)dt} \]则\[f\left( x \right) \ge h\left( x \right) > 0,h'\left( x \right) = g\left( x \right)f\left( x \right)\]
所以\[\frac{{h'\left( x \right)}}{{h\left( x \right)}} \ge \frac{{h'\left( x \right)}}{{f\left( x \right)}} = g\left( x \right)\]从而对上式两边积分即得

posted on 2014-05-06 16:43  一阴一阳之谓道  阅读(113)  评论(0编辑  收藏  举报

导航