我们知道,hbase没有像关系型的数据库拥有强大的查询功能和统计功能,本文实现了如何利用mapreduce来统计hbase中单元值出现的个数,并将结果携带目标的表中,
(1)mapper的实现
package com.datacenter.HbaseMapReduce.Summary;
import java.io.IOException;
import java.util.NavigableMap;
import java.util.Map.Entry;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class SummaryMapper extends TableMapper<Text, IntWritable> { // 这里是指定map中context输出的类型
public static final byte[] CF = "cf".getBytes();
public static final byte[] ATTR1 = "attr1".getBytes();
private final IntWritable ONE = new IntWritable(1);
private Text text = new Text();
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
/* byte[] ss = value.getValue(CF, ATTR1); // 这里是只是获取特定的列族,特定列的值的个数,也可以根据实际的情况修改
String val = new String(ss);
text.set(val); // we can only emit Writables..
context.write(text, ONE);*/
//统计所有的列族和列的值的个数
try {
DealResult( value , context);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
// 统计所有列族和列的值的个数
public void DealResult(Result rs ,Context context) throws Exception {
if (rs.isEmpty()) {
System.out.println("result is empty!");
return;
}
NavigableMap<byte[], NavigableMap<byte[], NavigableMap<Long, byte[]>>> tableResulrt = rs
.getMap();
String rowkey = Bytes.toString(rs.getRow()); // actain rowkey
///System.out.println("rowkey->" + rowkey);
for (Entry<byte[], NavigableMap<byte[], NavigableMap<Long, byte[]>>> familyResult : tableResulrt
.entrySet()) {
//System.out.print("\tfamily->" + Bytes.toString(temp.getKey()));
for (Entry<byte[], NavigableMap<Long, byte[]>> columnResult : familyResult
.getValue().entrySet()) {
///System.out.print("\tcol->" + Bytes.toString(value.getKey()));
for (Entry<Long, byte[]> valueResult : columnResult.getValue().entrySet()) {
//System.out.print("\tvesion->" + va.getKey());
//System.out.print("\tvalue->"+ Bytes.toString(va.getValue()));
//System.out.println();
text.set(new String(valueResult.getValue()));
context.write(text, ONE);
}
}
}
}
}
(2)reduce的实现
package com.datacenter.HbaseMapReduce.Summary;
import java.io.IOException;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class SummaryReducer extends
TableReducer<Text, IntWritable, ImmutableBytesWritable> {
public static final byte[] CF = "cf".getBytes();
public static final byte[] COUNT = "count".getBytes();
@SuppressWarnings("deprecation")
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
int i = 0;
for (IntWritable val : values) {
i += val.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
//Cell s=new
put.add(CF, COUNT, 100,Bytes.toBytes(i)); //在对应的列族中增加一列count,记录其个数
context.write(null, put);
}
}
(3)主类加载信息的实现
package com.datacenter.HbaseMapReduce.Summary;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HConnection;
import org.apache.hadoop.hbase.client.HConnectionManager;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
//统计hbase表中,每行的值在整个表的个数
public class SummaryMain {
static String rootdir = "hdfs://hadoop3:8020/hbase";
static String zkServer = "hadoop3";
static String port = "2181";
private static Configuration conf;
private static HConnection hConn = null;
public static void HbaseUtil(String rootDir, String zkServer, String port) {
conf = HBaseConfiguration.create();// 获取默认配置信息
conf.set("hbase.rootdir", rootDir);
conf.set("hbase.zookeeper.quorum", zkServer);
conf.set("hbase.zookeeper.property.clientPort", port);
try {
hConn = HConnectionManager.createConnection(conf);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
HbaseUtil(rootdir, zkServer, port);
Job job = new Job(conf, "ExampleSummary");
job.setJarByClass(SummaryMain.class); // class that contains mapper and
// reducer
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for
// MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
TableMapReduceUtil.initTableMapperJob("score", // input table
scan, // Scan instance to control CF and attribute selection
SummaryMapper.class, // mapper class
Text.class, // mapper output key
IntWritable.class, // mapper output value
job);
TableMapReduceUtil.initTableReducerJob("test", // output table
SummaryReducer.class, // reducer class
job);
job.setNumReduceTasks(1); // at least one, adjust as required
boolean b = job.waitForCompletion(true);
if (!b) {
throw new IOException("error with job!");
}
}
}
浙公网安备 33010602011771号