[Stats385] Lecture 05: Avoid the curse of dimensionality
Lecturer 咖中咖 Tomaso A. Poggio
三个基本问题:
- Approximation Theory: When and why are deep networks better than shallow networks?
- Optimization: What is the landscape of the empirical risk?
- Learning Theory: How can deep learning not overfit?
Q1:
貌似在说“浅层网络”也会有好表现的可行性。

但浅网络表达能力有限。
Q2,Q3:
稀疏表达(sparse representation)和降维(dimensionality reduction)
一个是subspace,一个是union of subspaces,这就是降维和稀疏表达的本质区别。
When more parameters than data, let's increase the number of training data, training error starts rise from 0, conversely test error continues to decline.

浙公网安备 33010602011771号