第八章 异常控制流实践


学习目标:
代码阅读理解:

掌握进程控制
掌握信号处理的方法
掌握管道和fifo进行进程间通信的方法

一、运行代码

sigactdemo

#include	<stdio.h>
#include    <unistd.h>
#include	<signal.h>
#define	INPUTLEN	100
void inthandler();	
int main()
{
	struct sigaction newhandler;	
	sigset_t blocked;	
	char x[INPUTLEN];
	newhandler.sa_handler = inthandler;	
	newhandler.sa_flags = SA_RESTART|SA_NODEFER|SA_RESETHAND;	
	sigemptyset(&blocked);	
	sigaddset(&blocked, SIGQUIT);	
	newhandler.sa_mask = blocked;	
	if (sigaction(SIGINT, &newhandler, NULL) == -1)
		perror("sigaction");
	else
		while (1) {
			fgets(x, INPUTLEN, stdin);
			printf("input: %s", x);
		}
	return 0;
}
void inthandler(int s)
{
	printf("Called with signal %d\n", s);
	sleep(s * 4);
	printf("done handling signal %d\n", s);
}

  • 参数结构sigaction定义如下

      struct sigaction {
      	void (*sa_handler)(int);
      	void (*sa_sigaction)(int, siginfo_t *, void *);
      	sigset_t sa_mask;
      	int sa_flags;
      	void (*sa_restorer)(void);
      }
    
  • flag

    • SA_RESETHAND:当调用信号处理函数时,将信号的处理函数重置为缺省值SIG_DFL
    • SA_RESTART:如果信号中断了进程的某个系统调用,则系统自动启动该系统调用
    • SA_NODEFER :一般情况下, 当信号处理函数运行时,内核将阻塞该给定信号。但是如果设置SA_NODEFER标记, 那么在该信号处理函数运行时,内核将不会阻塞该信号
  • 函数sigaction

      int sigaction(int signum,const struct sigaction *act ,struct sigaction *oldact);
    
    • sigaction()会依参数signum指定的信号编号来设置该信号的处理函数。参数signum可以指定SIGKILL和SIGSTOP以外的所有信号。

sigactdemo2

#include <unistd.h>
#include <signal.h>
#include <stdio.h>

void sig_alrm( int signo )
{
	/*do nothing*/
}

unsigned int mysleep(unsigned int nsecs)
{
	struct sigaction newact, oldact;
	unsigned int unslept;

	newact.sa_handler = sig_alrm;
	sigemptyset( &newact.sa_mask );
	newact.sa_flags = 0;
	sigaction( SIGALRM, &newact, &oldact );

	alarm( nsecs );
	pause();

	unslept = alarm ( 0 );
	sigaction( SIGALRM, &oldact, NULL );

	return unslept;
}

int main( void )
{
	while( 1 )
	{
		mysleep( 2 );
		printf( "Two seconds passed\n" );
	}
	return 0;
}

  • 每两秒输出一次

sigdemo1

#include	<stdio.h>
#include	<signal.h>
void	f(int);			
int main()
{
	int	i;
	signal( SIGINT, f );		
	for(i=0; i<5; i++ ){		
		printf("hello\n");
		sleep(2);
	}

	return 0;
}

void f(int signum)			
{
	printf("OUCH!\n");
}

  • 连续输出五个hello,每两个间隔是两秒
  • 在这期间,每次输入的Ctrl+C都被处理成打印OUCH

sigdemo2

#include	<stdio.h>
#include	<signal.h>

main()
{
	signal( SIGINT, SIG_IGN );

	printf("you can't stop me!\n");
	while( 1 )
	{
		sleep(1);
		printf("haha\n");
	}
}

  • 一直输出haha,按Ctrl+C不能停止。
  • SIG_DFL,SIG_IGN 分别表示无返回值的函数指针,指针值分别是0和1,这两个指针值逻辑上讲是实际程序中不可能出现的函数地址值。
    • SIG_DFL:默认信号处理程序
    • SIG_IGN:忽略信号的处理程序

sigdemo3

#include	<stdio.h>
#include    <string.h>
#include	<signal.h>
#include    <unistd.h>

#define	INPUTLEN	100

int main(int argc, char *argv[])
{
	void inthandler(int);
	void quithandler(int);
	char input[INPUTLEN];
	int nchars;

	signal(SIGINT, inthandler);//^C	
	signal(SIGQUIT, quithandler);//^\

	do {
		printf("\nType a message\n");
		nchars = read(0, input, (INPUTLEN - 1));
		if (nchars == -1)
			perror("read returned an error");
		else {
			input[nchars] = '\0';
			printf("You typed: %s", input);
		}
	}
	while (strncmp(input, "quit", 4) != 0);
	return 0;
}
void inthandler(int s)
{
	printf(" Received signal %d .. waiting\n", s);
	sleep(2);
	printf("  Leaving inthandler \n");
}
void quithandler(int s)
{
	printf(" Received signal %d .. waiting\n", s);
	sleep(3);
	printf("  Leaving quithandler \n");
}

  • 多信号处理SIGX打断SIGX的情况

exec1

#include <stdio.h>
#include <unistd.h>
int main(){
	char	*arglist[3];
	arglist[0] = "ls";
	arglist[1] = "-l";
	arglist[2] = 0 ;//NULL
	printf("* * * About to exec ls -l\n");
	execvp( "ls" , arglist );
	printf("* * * ls is done. bye");

	return 0;
}

int execvp(const char file ,char const argv []);
  • execvp()会从PATH 环境变量所指的目录中查找符合参数file 的文件名,找到后便执行该文件,然后将第二个参数argv传给该欲执行的文件。
  • 如果执行成功则函数不会返回,执行失败则直接返回-1,失败原因存于errno中。
  • 在执行时exevp函数调用成功没有返回,所以没有打印“* * * ls is done. bye”

exec2

#include <stdio.h>
#include <unistd.h>
int main(){
	char	*arglist[3];
	arglist[0] = "ls";
	arglist[1] = "-l";
	arglist[2] = 0 ;
	printf("* * * About to exec ls -l\n");
	execvp( arglist[0] , arglist );
	printf("* * * ls is done. bye\n");
}
  • exec1传的是ls,exec2传送的是arglist[0],但运行结果是相同的。

exer3

#include <stdio.h>
#include <unistd.h>
int main(){
    char    *arglist[3];
    char*myenv[3];
    myenv[0] = "PATH=:/bin:";
    myenv[1] = NULL;
    arglist[0] = "ls";
    arglist[1] = "-l";
    arglist[2] = 0 ;
    printf("* * * About to exec ls -l\n");
    execlp("ls", "ls", "-l", NULL);
    printf("* * * ls is done. bye\n");
}
  • int execlp(const char * file,const char * arg,....);
  • execlp()会从PATH 环境变量所指的目录中查找符合参数file的文件名,找到后便执行该文件,然后将第二个以后的参数当做该文件的argv[0]、argv[1]……,最后一个参数必须用空指针(NULL)作结束。
  • 指定了环境变量,然后依然执行了ls -l指令,成功后没有返回,所以最后一句话不会输出。运行结果同exec1。

forkdemo1

#include    <stdio.h>
#include<sys/types.h>
#include<unistd.h>
int main(){
    int ret_from_fork, mypid;
    mypid = getpid();              
    printf("Before: my pid is %d\n", mypid);
    ret_from_fork = fork();
    sleep(1);
    printf("After: my pid is %d, fork() said %d\n",
            getpid(), ret_from_fork);
    return 0;
}

  • 这个代码先是打印进程pid,然后调用fork函数生成子进程,休眠一秒后再次打印进程id,这时父进程打印子进程pid,子进程返回0。
  • 父进程通过调用fork函数创建一个新的运行子进程。
  • 调用一次,返回两次。一次返回到父进程,一次返回到新创建的子进程。

forkdemo2

#include <stdio.h>
#include <unistd.h>
int main()
{
    printf("before:my pid is %d\n", getpid() );
    fork();
    fork();
    printf("aftre:my pid is %d\n", getpid() );

    return 0;
}

  • 这个代码调用两次fork,一共产生四个子进程,所以会打印四个aftre输出。

forkdemo4

#include    <stdio.h>
#include    <stdlib.h>
#include    <unistd.h>
int main(){
    int fork_rv;
    printf("Before: my pid is %d\n", getpid());
    fork_rv = fork();       /* create new process   */
    if ( fork_rv == -1 )        /* check for error  */
        perror("fork");
    else if ( fork_rv == 0 ){ 
        printf("I am the child.  my pid=%d\n", getpid());
        printf("parent pid= %d, my pid=%d\n", getppid(), getpid());
        exit(0);
    }
    else{
        printf("I am the parent. my child is %d\n", fork_rv);
        sleep(10);
        exit(0);
    }
    return 0;
}

  • 先打印进程pid,然后fork创建子进程,父进程返回子进程pid,所以输出parent一句,休眠十秒;子进程返回0,所以输出child与之后一句。

forkgdb

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int  gi=0;
int main()
{
    int li=0;
    static int si=0;
    int i=0;
    pid_t pid = fork();
    if(pid == -1){
        exit(-1);
    }
    else if(pid == 0){
        for(i=0; i<5; i++){
            printf("child li:%d\n", li++);
            sleep(1);
            printf("child gi:%d\n", gi++);
            printf("child si:%d\n", si++);
        }
        exit(0);
        
    }
    else{
        for(i=0; i<5; i++){
            printf("parent li:%d\n", li++);
            printf("parent gi:%d\n", gi++);
            sleep(1);
            printf("parent si:%d\n", si++);
        }
    exit(0);    
    
    }
    return 0;
}

  • 父进程打印是先打印两句,然后休眠一秒,然后打印一句,子进程先打印一句,然后休眠一秒,然后打印两句。并且这两个线程是并发的,所以可以看到在一个线程休眠的那一秒,另一个线程在执行,并且线程之间相互独立互不干扰。

psh1

#include    <stdio.h>
#include    <stdlib.h>
#include    <string.h>
#include    <unistd.h>
#define MAXARGS     20              
#define ARGLEN      100             
int execute( char *arglist[] )
{
    execvp(arglist[0], arglist);        
    perror("execvp failed");
    exit(1);
}

char * makestring( char *buf )
{
    char    *cp;

    buf[strlen(buf)-1] = '\0';      
    cp = malloc( strlen(buf)+1 );       
    if ( cp == NULL ){          
        fprintf(stderr,"no memory\n");
        exit(1);
    }
    strcpy(cp, buf);        
    return cp;          
}
int main()
{
    char    *arglist[MAXARGS+1];        
    int     numargs;            
    char    argbuf[ARGLEN];         

    numargs = 0;
    while ( numargs < MAXARGS )
    {                   
        printf("Arg[%d]? ", numargs);
        if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
            arglist[numargs++] = makestring(argbuf);
        else
        {
            if ( numargs > 0 ){     
                arglist[numargs]=NULL;  
                execute( arglist ); 
                numargs = 0;        
            }
        }
    }
    return 0;
}

  • 依次你输入要执行的指令与参数,回车表示输入结束,然后输入的每个参数对应到函数中,再调用对应的指令。
  • 第一个是程序名,然后依次是程序参数。
  • 一个字符串,一个字符串构造参数列表argist,最后在数组末尾加上NULL
  • 将arglist[0]和arglist数组传给execvp。
  • 程序正常运行,execvp命令指定的程序代码覆盖了shell程序代码,并在命令结束之后退出,shell就不能再接受新的命令。

psh2

#include    <stdio.h>
#include    <stdlib.h>
#include    <string.h>
#include    <sys/types.h>
#include    <sys/wait.h>
#include    <unistd.h>
#include    <signal.h>
#define MAXARGS     20              
#define ARGLEN      100             

char *makestring( char *buf )
{
    char    *cp;

    buf[strlen(buf)-1] = '\0';      
    cp = malloc( strlen(buf)+1 );       
    if ( cp == NULL ){          
        fprintf(stderr,"no memory\n");
        exit(1);
    }
    strcpy(cp, buf);        
    return cp;          
}

void execute( char *arglist[] )
{
    int pid,exitstatus;             

    pid = fork();                   
    switch( pid ){
        case -1:    
            perror("fork failed");
            exit(1);
        case 0:
            execvp(arglist[0], arglist);        
            perror("execvp failed");
            exit(1);
        default:
            while( wait(&exitstatus) != pid )
                ;
            printf("child exited with status %d,%d\n",
                    exitstatus>>8, exitstatus&0377);
    }
}

int main()
{
    char    *arglist[MAXARGS+1];        
    int     numargs;            
    char    argbuf[ARGLEN];         

    numargs = 0;
    while ( numargs < MAXARGS )
    {                   
        printf("Arg[%d]? ", numargs);
        if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
            arglist[numargs++] = makestring(argbuf);
        else
        {
            if ( numargs > 0 ){     
                arglist[numargs]=NULL;  
                execute( arglist ); 
                numargs = 0;        
            }
        }
    }
    return 0;
}

  • 比起psh1多了循环判断,不退出的话就可以一直保持在输入指令,并且对于子程序存在的状态条件。

  • 为了解决这个问题,程序通过调用fork来复制自己。

  • 调用fork函数之后内核的工作过程:

      分配新的内存块和内核数据结构
      复制原来的进程到新的进程
      向运行进程集添加新的进程
      将控制返回给两个进程
    

testbuf1

#include <stdio.h>
#include <stdlib.h>
int main()
{
    printf("hello");
    fflush(stdout);
    while(1);
}

  • 效果是先输出hello,然后保持在循环中不结束进程。

testbuf2

#include <stdio.h>
int main()
{
    printf("hello\n");
    while(1);
}
  • fflush(stdout)的效果和换行符\n是一样的。

testbuf3

#include <stdio.h>

int main()
{
    fprintf(stdout, "1234", 5);
    fprintf(stderr, "abcd", 4);
}

  • 将内容格式化输出到标准错误、输出流中。

testpid

#include <stdio.h>
#include <unistd.h>

#include <sys/types.h>

int main()
{
    printf("my pid: %d \n", getpid());
    printf("my parent's pid: %d \n", getppid());
    return 0;
}

  • 输出当前进程pid和当前进程的父进程的pid。

testpp

#include <stdio.h>
#include <stdlib.h>
int main()
{
    char **pp;
    pp[0] = malloc(20);

    return 0;
}

  • 我觉得问题在于没给pp分配空间就调用了pp[0],毕竟声明的时候只是一个指针,而指针必须要初始化。

  • 我认为应该改成:

    include <stdio.h>

    include <stdlib.h>

    int main()
    {
    char pp;
    pp = (char
    )malloc(20);
    pp[0] = (char*)malloc(20);
    return 0;
    }

testsystem

#include    <stdlib.h>

int main ( int argc, char *argv[] )
{

    system(argv[1]);
    system(argv[2]);
    return EXIT_SUCCESS;
}               /* ----------  end of function main  ---------- */

  • system()——执行shell命令,也就是向dos发送一条指令。这里是后面可以跟两个参数,然后向dos发送这两个命令,分别执行。

waitdemo1

#include    <stdio.h>
#include    <stdlib.h>
#include    <sys/types.h>
#include    <sys/wait.h>
#include    <unistd.h>

#define DELAY   4

void child_code(int delay)
{
    printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
    sleep(delay);
    printf("child done. about to exit\n");
    exit(17);
}

void parent_code(int childpid)
{
    int wait_rv=0;      /* return value from wait() */
    wait_rv = wait(NULL);
    printf("done waiting for %d. Wait returned: %d\n", 
            childpid, wait_rv);
}
int main()
{
    int  newpid;
    printf("before: mypid is %d\n", getpid());
    if ( (newpid = fork()) == -1 )
        perror("fork");
    else if ( newpid == 0 )
        child_code(DELAY);
    else
        parent_code(newpid);

    return 0;
}

  • 如果有子进程,则终止子进程,成功返回子进程pid。

waitdemo2

#include    <stdio.h>
#include    <stdlib.h>
#include    <sys/types.h>
#include    <sys/wait.h>
#include    <unistd.h>

#define DELAY   10

void child_code(int delay)
{
    printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
    sleep(delay);
    printf("child done. about to exit\n");
    exit(27);
}

void parent_code(int childpid)
{
    int wait_rv;    
    int child_status;
    int high_8, low_7, bit_7;

    wait_rv = wait(&child_status);
    printf("done waiting for %d. Wait returned: %d\n", childpid, wait_rv);

    high_8 = child_status >> 8;     /* 1111 1111 0000 0000 */
    low_7  = child_status & 0x7F;   /* 0000 0000 0111 1111 */
    bit_7  = child_status & 0x80;   /* 0000 0000 1000 0000 */
    printf("status: exit=%d, sig=%d, core=%d\n", high_8, low_7, bit_7);
}

int main()
{
    int  newpid;

    printf("before: mypid is %d\n", getpid());

    if ( (newpid = fork()) == -1 )
        perror("fork");
    else if ( newpid == 0 )
        child_code(DELAY);
    else
        parent_code(newpid);
}

  • 多了一个子进程的状态区分,把状态拆分成三块,exit,sig和core。

二、其它

管道和fifo进行进程间通信的方法部分的内容还没有写完,周一一定会写完,之前花了一部分看视频,没有留出足够的时间写博客...所以博客上就只放了些代码和运行结果...

三、参考资料

参考资料1:深入理解计算机系统(第二版)
参考资料2:Linux开发中常见段错误问题原因分析
参考资料3:指针与数组的区别和联系