10 2022 档案

摘要:数据链接:https://pan.baidu.com/s/1JS1fTrCrZHonNsywLDLhhQ?pwd=a6uf 提取码:a6uf 推荐数据集参考网站:http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ 这里只是 阅读全文
posted @ 2022-10-30 09:38 silvan_happy 阅读(106) 评论(0) 推荐(0)
摘要:参考网址:https://zhuanlan.zhihu.com/p/352181306 数据链接:https://pan.baidu.com/s/1JS1fTrCrZHonNsywLDLhhQ?pwd=a6uf 提取码:a6uf 1 import pandas as pd 2 from surpri 阅读全文
posted @ 2022-10-30 09:32 silvan_happy 阅读(36) 评论(0) 推荐(0)
摘要:1 ''' 2 input hello 3 output ohlol use RNNcell 4 ''' 5 import torch 6 7 input_size=4 8 hidden_size=4 9 batch_size=1 10 # 准备数据 11 idx2char=['e','h','l' 阅读全文
posted @ 2022-10-24 22:25 silvan_happy 阅读(170) 评论(0) 推荐(0)
摘要:同样的参数,CPU跑15min,GPU 2min43s 1 #根据地名分辨国家 2 import math 3 import time 4 import torch 5 # 绘图 6 import matplotlib.pyplot as plt 7 import numpy as np 8 # 读 阅读全文
posted @ 2022-10-24 22:22 silvan_happy 阅读(318) 评论(0) 推荐(0)
摘要:CNN用于图像识别 最后accuracy on test set:98% 1 import torch 2 import torch.nn as nn 3 from torchvision import transforms 4 from torchvision import datasets 5 阅读全文
posted @ 2022-10-23 22:58 silvan_happy 阅读(98) 评论(0) 推荐(0)
摘要:课堂练习: 1 import torch 2 from torchvision import transforms 3 from torchvision import datasets 4 from torch.utils.data import DataLoader 5 import torch. 阅读全文
posted @ 2022-10-23 17:14 silvan_happy 阅读(122) 评论(0) 推荐(0)
摘要:课堂练习,课后作业不想做了…… 1 import torch 2 from torchvision import transforms 3 from torchvision import datasets 4 from torch.utils.data import DataLoader 5 imp 阅读全文
posted @ 2022-10-23 15:48 silvan_happy 阅读(128) 评论(0) 推荐(0)
摘要:课堂练习: 1 import torch 2 import numpy as np 3 from torch.utils.data import Dataset 4 from torch.utils.data import DataLoader 5 6 # prepare dataset 7 cla 阅读全文
posted @ 2022-10-23 15:42 silvan_happy 阅读(186) 评论(0) 推荐(0)
摘要:1 import numpy as np 2 import torch 3 import matplotlib.pyplot as plt 4 import os 5 os.environ['KMP_DUPLICATE_LIB_OK']='True' 6 7 #1 prepare dataset 8 阅读全文
posted @ 2022-10-22 15:49 silvan_happy 阅读(93) 评论(0) 推荐(0)
摘要:Seq2Path: Generating Sentiment Tuples as Paths of a Tree Seq2Path:生成情感元组作为树的路径 Author Information:Yue Mao, Yi Shen, Jingchao Yang, Xiaoying Zhu, Longj 阅读全文
posted @ 2022-10-22 09:34 silvan_happy 阅读(378) 评论(0) 推荐(0)
摘要:A Unified Generative Framework for Aspect-Based Sentiment Analysis Paper:https://arxiv.org/pdf/2106.04300.pdf Code:https://github.com/yhcc/BARTABSA Au 阅读全文
posted @ 2022-10-22 09:28 silvan_happy 阅读(247) 评论(0) 推荐(0)
摘要:1 import torch 2 import torch.nn.functional as F 3 4 # 1prepare dataset 5 x_data = torch.Tensor([[1.0], [2.0], [3.0]]) 6 y_data = torch.Tensor([[0], [ 阅读全文
posted @ 2022-10-20 19:57 silvan_happy 阅读(128) 评论(0) 推荐(0)
摘要:1 import torch 2 3 # 1prepare dataset 4 # x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征 5 x_data = torch.tensor([[1.0], [2.0], [3.0]]) 6 y_data = torch.tensor([[ 阅读全文
posted @ 2022-10-20 19:57 silvan_happy 阅读(96) 评论(0) 推荐(0)
摘要:1 import torch 2 from matplotlib import pyplot as plt 3 import os 4 os.environ['KMP_DUPLICATE_LIB_OK']='True' 5 6 x_data = [1.0, 2.0, 3.0] 7 y_data = 阅读全文
posted @ 2022-10-20 19:55 silvan_happy 阅读(138) 评论(0) 推荐(0)
摘要:#梯度下降法 from matplotlib import pyplot as plt # prepare the training set x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # initial guess of weight w = 阅读全文
posted @ 2022-10-19 19:22 silvan_happy 阅读(117) 评论(0) 推荐(0)
摘要:刘二大人的Pytorch保姆式教程。 我觉得算0基础学Pytorch吧,从我现在的基础看就是比较easy的程度,正和我意~ 课堂练习: import numpy as np import matplotlib.pyplot as plt x_data = [1.0, 2.0, 3.0] y_data 阅读全文
posted @ 2022-10-19 08:36 silvan_happy 阅读(208) 评论(0) 推荐(0)
摘要:下面三种需求都是可以尝试的: 错误1: AssertionError: Torch not compiled with CUDA enabled 错误2: torch.cuda.is_available() 输出false 需求3: 就是想安装Pytorch 请锁死下面的博客!!!试了也就几十个博客 阅读全文
posted @ 2022-10-18 19:50 silvan_happy 阅读(65) 评论(0) 推荐(0)
摘要:Deep biaffine attention for neural dependency parsing 基于深层双仿射注意力的神经网络依存解析 论文地址:https://arxiv.org/pdf/1611.01734.pdf 参考博客:https://zhuanlan.zhihu.com/p/ 阅读全文
posted @ 2022-10-16 21:12 silvan_happy 阅读(1690) 评论(0) 推荐(1)
摘要:[1]王弘睿,于东.面向机器道德判断任务的细粒度中文道德语义知识库构建[J].中文信息学报,2022,36(07):59-68. 文献构建了包含15 371词的中文道德语义知识库,单独一篇纪录有点单薄,就记在这里吧~ [2]李强,阳东升,孙江生,刘建军,费爱国,王飞跃.“社会认知战”:时代背景、概念 阅读全文
posted @ 2022-10-16 00:05 silvan_happy 阅读(281) 评论(0) 推荐(0)
摘要:来源:[1]刘晓明,张兆晗,杨晨阳,张宇辰,沈超,周亚东,管晓宏.在线社交网络文本内容对抗技术[J].计算机学报,2022,45(08):1571-1597. 从文本内容生成与检测两方面对在线社交网络对抗进行阐述。针对社交网络文本内容检测方法,从基于零次分类器的模型、基于机器特征的模型、基于预训练语 阅读全文
posted @ 2022-10-15 23:37 silvan_happy 阅读(134) 评论(0) 推荐(0)
摘要:论文:Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction 论文地址:https://aclanthology.org/2022.acl-long.212.pdf 名词解释 阅读全文
posted @ 2022-10-15 11:59 silvan_happy 阅读(1837) 评论(0) 推荐(0)