扩大
缩小

关于组合数

定义

  $\large\binom nk$ :$n$ 个不同物品选取其中 $k$ 个物品的不同方案数,也可以写成 $C_n^k$。

组合数的阶乘形式

  如果要知道求组合数的公式,那么要从排列数说起。

  排列数:从 $n$ 个不同物品中有顺序地选出 $k$ 个物品,那么不同方案数为:

$$\prod_{i=n-k+1}^n i$$

  写成阶乘的形式:

$$\frac{n!}{(n-k)!}$$

  这很好理解,就是先从 $n$ 个物品中挑选出一个物品,再从剩余 $n-1$ 个物品再挑选另一个,……,最后在所剩的 $n-k+1$ 个物品中再挑一个物品,利用乘法原理可以求出如上方案数。

  组合数与排列数的差异在于,组合数的选取方案是没有顺序的,所以组合数的计算方式就是排列数除以挑选 $k$ 个物品的不同排列个数 $k!$。

  所以组合数可以和阶乘展开式互相转换:

$$\binom nk = \frac{n!}{k!\;(n-k)!}$$

组合数恒等式

  $$1.\;\binom nk = \binom{n}{n-k}$$

  这个恒等式可以这样理解:你有 $n$ 个物品要丢掉 $k$ 个,等同于在 $n$ 个物品中留下 $n-k$ 个的方案数。

 

  $$2.\;\binom n k = \binom {n-1}k + \binom{n - 1}{k - 1}$$

  计算过程如下:
  

\begin{aligned}
\binom nk &= \frac{n!}{k!(n-k)!}\\
\\
&=\frac{n\cdot(n-1)!}{k! (n-k)!}\\
\\
\ &=\frac{(n-k)\cdot(n-1)!}{k!(n-k)!}+\frac{k \cdot (n-1)!}{k! (n-k)!} \\
\\
\ &= \frac{(n-1)!}{k! (n-k-1)!}+\frac{(n-1)!}{(k-1)! (n-k)!}\\
\\
\ &= \binom {n-1}{k}+ \binom {n-1}{k-1}
\\
\end{aligned}

 

$$3.\;\binom n k = \frac{n}{k} \binom{n-1}{k-1}$$

posted @ 2019-12-30 12:57  HoshizoraZ  阅读(309)  评论(0编辑  收藏  举报