随笔分类 - tensorflow深度学习
tensorflow2.0+keras学习
    
摘要:本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range(5)) # 打印排序后的tensor print(tf.sort(a,direction='DESC
        阅读全文
                
摘要:本篇内容包括,tf.norm(张量的范数)、tf.reduce_min/max(最大最小值)、tf.argmax/argmin(最大最小值的位置)、tf.equal(张量的比较)、tf.unique(张量的独特值) 1.tf.norm · 二范数 ||x||2 = (Σxk2)1/2 · 一范数 |
        阅读全文
                
摘要:先来看一下有哪些接口用来进行张量的合并与分割: tf.concat用来进行张量的拼接,tf.stack用来进行张量的堆叠,tf.split用来进行张量的分割,tf.unstack是tf.split的一种,也用来进行张量分割 1.tf.concat 参数axis代表将要合并的维度 # 假设a代表四个班
        阅读全文
                
摘要:前面在mnist中使用了三个非线性层来增加模型复杂度,并通过最小化损失函数来更新参数,下面实用最底层的方式即张量进行前向传播(暂不采用层的概念)。 主要注意点如下: · 进行梯度运算时,tensorflow只对tf.Variable类型的变量进行记录,而不对tf.Tensor或者其他类型的变量记录 
        阅读全文
                
摘要:broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据。 可以这样理解,对 [b,784]@[784,10]+[10]这样一个操作([10]可以理解为偏置项),那么原式可以化为[b,10]+[10],但是
        阅读全文
                
摘要:维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一。 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念。所谓View,简单的可以理解成我们对一个tensor不同维度关系的认识。举个例子,一个[ b,28,28,1
        阅读全文
                
摘要:玩过深度学习图像处理的都知道,对于一张分辨率超大的图片,我们往往不会采取直接压平读入的方式喂入神经网络,而是将它切成一小块一小块的去读,这样的好处就是可以加快读取速度并且减少内存的占用。就拿医学图像处理来说吧,医学CT图像一般都是比较大的,一张图片就可能达到500MB+,有的甚至超过1GB,下面是切
        阅读全文
                
摘要:在tensorflow2.0版本之前,1.x版本的tensorflow的基本数据类型有计算图(Computation Graph)和张量(Tensor)两种,但tensorflow2.0之后的版本取消了Graph和Session的概念。今天简单记录一下Tensor的相关内容。 从Tensorflow
        阅读全文
                
摘要:今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张28*28的图片组成的,它们也被分为10类,有60k被用作训练,10k被用作测试。唯一的区别就是,f
        阅读全文
                
摘要:上一篇我们提到了回归问题中的梯度下降算法,而且我们知道线性模型只能解决简单的线性回归问题,对于高维图片,线性模型不能完成这样复杂的分类任务。那么是不是线性模型在离散值预测或图像分类问题中就没有用武之地了呢? 本篇我们就套用regression中的部分机制来处理classification中的问题。 
        阅读全文
                
摘要:由于tensorflow2.0版本的更新,很多以前版本上提到的图等概念都不再适用。为了跟上时代的步伐,顺便扎实一下深度学习的基础,从今天开始记录一下学习过程。 要想开始深度学习,首先必不可少的就是数学基础了,虽然tensorflow提供了一系列不需要太深的数学基础就可以使用的现成的函数,但是总吃表面
        阅读全文
                
                    
                
浙公网安备 33010602011771号