随笔分类 -  uva

摘要:回文串的题,求最大的双重回文串;重新复习了一下manacher算法;代码: 1 #include 2 #include 3 #include 4 #define M 310010 5 using namespace std; 6 char b[M],a[M='A')17 b[i]=b[i]-'A'+'a';18 memset(a,0,sizeof a);19 n=0;20 a[n++]='?';21 a[n++]='#';22 for(i=1; b[i]!='\0'; i++)23 ... 阅读全文
posted @ 2013-10-18 15:21 Yours1103 阅读(366) 评论(0) 推荐(0)
摘要:一道DP题;一共有三种砖,1*2,2*1,2*2,然后要你铺满整个n*2的地板,求不重复的铺法数;方法:首先计算了不考虑对称的情况,然后计算只考虑对称的情况;所以结果就是(不考虑对称数+只考虑对称数)/2;递推关系:dp[i] 表示左右各伸展 i 的对称情况。dp[i+1] += dp[i]//两边补上 1 x 2dp[i+2] += dp[i]*2//两边补上2x1 跟 2x2 兩种。然后只考虑对称的情况下有两种情况:n==奇数:中间有个1*2;n==偶数;中间有两个2*1;或者两个2*1或者一个2*2;代码: 1 #include 2 #include 3 using namespace 阅读全文
posted @ 2013-10-10 17:11 Yours1103 阅读(136) 评论(0) 推荐(0)
摘要:动态规划;白书上的题,看了好久看不懂刘汝佳的解法;在网上无意中看到了大神的思路,比较好理解,膜拜!他的思路是这样的:设d[i]是n个数按顺时针方向分别从0开始编号,第一次删除0,以后每k个数删除一个,最后剩下的数。实际上d[i]就是顺时针偏移了多少位。状态转移方程:d[i] = (k - 1 + d[i-1]) % (n-1) + 1;(删了0后,剩下1,2,...,n,全部减1后得到0,1,2,...,n-1,所以原来该删k——>>k-1,顺时针偏移d[i-1]位,取模,加1后变回原来的编号)代码: 1 #include 2 #define maxn 10009 3 using 阅读全文
posted @ 2013-10-06 20:13 Yours1103 阅读(199) 评论(0) 推荐(0)
摘要:一个简单的货郎担问题,用状态压缩dp可以解决;解法:d(i,S)=min{d(j,S-{j})+dis(i,j) | j belongs to S};边界条件:d(i,{})=dis(0,i).最终答案:d(0,{1,2,3```n-1})时间复杂度:O(n^2*2^b);代码: 1 #include 2 #include 3 #include 4 #include 5 using namespace std; 6 int dp[1024][11],dis[11][11],posx[11],posy[11]; 7 8 int main() 9 {10 int t,x,y,n;11 ... 阅读全文
posted @ 2013-10-06 13:51 Yours1103 阅读(206) 评论(0) 推荐(0)
摘要:一个01背包问题;刚刚开始把题目看错了,以为物品的数目是有限的,然后让你求一个家庭里最多能够拿多个价值的东西;这样一来的话,这个题目就有点意思了;但是后来发现竟然是个简单的01背包问题 = =;代码: 1 #include 2 #define maxn 1007 3 #include 4 #include 5 using namespace std; 6 7 int price[maxn],weight[maxn],f[105]; 8 int main() 9 {10 int t,n,g,x;11 scanf("%d",&t);12 while(t--)13 ... 阅读全文
posted @ 2013-10-06 10:50 Yours1103 阅读(159) 评论(0) 推荐(0)
摘要:简单的动态规划题,不过题目意思很蛋疼;刚刚开始认为是最长上升子序列,错的一塌糊涂;后来看了斌牛的题解才知道是最长公共子序列;题解:当a[i]==b[j],d(i,j)=(i-1,j-1)+1;else d(i,j)=max(d(i,j-1),d(i-1,j));代码: 1 #include 2 #define maxn 25 3 #include 4 #include 5 using namespace std; 6 int a[maxn],b[maxn],f[maxn][maxn]; 7 int main() 8 { 9 int n,x;10 scanf("%d",&am 阅读全文
posted @ 2013-10-04 23:07 Yours1103 阅读(176) 评论(0) 推荐(0)