09 2017 档案
摘要:Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练上,所以Pytorch也吸引了很多人的关注。之前有一篇关于TensorFlow实现的CNN可以用来做
阅读全文
摘要:Keras使我们搭建神经网络变得异常简单,之前我们使用了Sequential来搭建LSTM:keras实现LSTM。 我们要使用Keras的functional API搭建更加灵活的网络结构,比如说本文的autoencoder,关于autoencoder的介绍可以在这里找到:deep autoenc
阅读全文
摘要:LSTM是优秀的循环神经网络(RNN)结构,而LSTM在结构上也比较复杂,对RNN和LSTM还稍有疑问的朋友可以参考:Recurrent Neural Networks vs LSTM 这里我们将要使用Keras搭建LSTM.Keras封装了一些优秀的深度学习框架的底层实现,使用起来相当简洁,甚至不
阅读全文
摘要:TensorFlow是目前深度学习最流行的框架,很有学习的必要,下面我们就来实际动手,使用TensorFlow搭建一个简单的CNN,来对经典的mnist数据集进行数字识别。 如果对CNN还不是很熟悉的朋友,可以参考:Convolutional Neural Network。 下面就开始。 step
阅读全文
摘要:Recurrent Neural Network RNN擅长处理序列问题。下面我们就来看看RNN的原理。 可以这样描述:如上图所述,网络的每一个output都会对应一个memory单元用于存储这一时刻网络的输出值, 然后这个memory会作为下一时刻输入的一部分传入RNN,如此循环下去。 下面来看一
阅读全文
摘要:问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中可以看出,layer2整
阅读全文
摘要:一、背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,这个算法目前已经被大量的应用,最
阅读全文