摘要:
今天开始学Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)
这一节是浓缩了整本书关于概率论的精华,突出一个不确定性(uncertainty)的理解。
首先从一个例子说起:有两个盒子,一个红色盒子里面有2个苹果(绿)+6个桔子(黄),一个蓝色盒子里面有3个苹果+1个桔子,具体可以见图1.9。随机挑选一个盒子,然后从盒子里随机拿出一个水果,观察是什么后放回原处,重复这个过程很多次。
我们定义挑选红色盒子的次数为总次数的40%,挑选蓝色盒子的次数为60%。在这个例子中,盒子的颜色是一个随机变量,我们称之为B,它有两个取值r(red)和b(blue);水果也是一个随机变量,称之为F,它的取值是a(apple)和o(orange)。
首先 阅读全文
今天开始学Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)
这一节是浓缩了整本书关于概率论的精华,突出一个不确定性(uncertainty)的理解。
首先从一个例子说起:有两个盒子,一个红色盒子里面有2个苹果(绿)+6个桔子(黄),一个蓝色盒子里面有3个苹果+1个桔子,具体可以见图1.9。随机挑选一个盒子,然后从盒子里随机拿出一个水果,观察是什么后放回原处,重复这个过程很多次。
我们定义挑选红色盒子的次数为总次数的40%,挑选蓝色盒子的次数为60%。在这个例子中,盒子的颜色是一个随机变量,我们称之为B,它有两个取值r(red)和b(blue);水果也是一个随机变量,称之为F,它的取值是a(apple)和o(orange)。
首先 阅读全文
posted @ 2013-04-25 01:55
Bin的专栏
阅读(3407)
评论(6)
推荐(2)
浙公网安备 33010602011771号