三角函数给值求角

前言

三角函数给值求角的问题,其实可以拆分为两个部分,其一为给值求值,其二为添加角的范围;故其实质,往往需要先转化为给值求值,然后还需要所求角的范围,最终通过解三角方程达到目的,其中题目中往往暗含对角的范围的压缩,这是个难点。

角范围压缩

引例,已知\(\theta\in (0,\cfrac{\pi}{2})\),且\(\sin\theta=\cfrac{2}{5}\),要是使用已知的范围\(\theta\in (0,\cfrac{\pi}{2})\),不会出现多个值的情形,那么我们可以直接使用题目所给的范围,万一有题目需要我们压缩角的范围,该如何做呢?

比如由\(\sin\theta=\cfrac{2}{5}<\cfrac{1}{2}\),则可以将角的范围由\(\theta\in (0,\cfrac{\pi}{2})\)压缩到\(\theta\in (0,\cfrac{\pi}{6})\),为什么要压缩?当角的范围越大,最后结果出现多个值的可能性就越大,所以角的范围越小越好,问题是我们形成的思维定势,往往只根据函数值的正负作范围压缩,很少利用函数值的大小来压缩角的范围。借助下面的例子,你可以体会压缩的原因和压缩的方法。

典例剖析

【2018\(\cdot\)成都模拟】若\(sin2\alpha=\cfrac{\sqrt{5}}{5}\)\(sin(\beta-\alpha)=\cfrac{\sqrt{10}}{10}\),且\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\),则\(\alpha+\beta\)的值是【】

$A.\cfrac{7\pi}{4}$ $B.\cfrac{9\pi}{4}$ $C.\cfrac{5\pi}{4}或\cfrac{7\pi}{4}$ $D.\cfrac{5\pi}{4}或\cfrac{9\pi}{4}$

分析:此题属于给值求角,难在角的范围的压缩。

由于\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(2\alpha\in [\cfrac{\pi}{2},2\pi]\),但\(sin2\alpha=\cfrac{\sqrt{5}}{5}\),故\(2\alpha\in [\cfrac{\pi}{2},\pi]\)此处结合函数值的正负,可以将角的范围压缩。为什么要压缩教的范围,原因是范围越小,求值时越容易避免出现多值的情况。\(\quad\)

则得到\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\),所以\(cos2\alpha=-\cfrac{2\sqrt{5}}{5}\)

\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\),故\(\beta-\alpha\in [\cfrac{\pi}{2},\cfrac{5\pi}{4}]\)此处用到同向不等式的可加性,\(\pi\leqslant\beta\leqslant\cfrac{3\pi}{2}\)\(-\cfrac{\pi}{2}\leqslant-\alpha\leqslant-\cfrac{\pi}{4}\),相加得到\(\beta-\alpha\)\(\in\)\([\cfrac{\pi}{2},\cfrac{5\pi}{4}]\)\(\quad\),于是,\(cos(\beta-\alpha)=-\cfrac{3\sqrt{10}}{10}\)

所以\(cos(\alpha+\beta)=cos[2\alpha+(\beta-\alpha)]\)\(=cos2\alpha cos(\beta-\alpha)-sin2\alpha sin(\beta-\alpha)\)

\(=-\cfrac{2\sqrt{5}}{5}\times (-\cfrac{3\sqrt{10}}{10})-\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{10}}{10}\)

\(=\cfrac{\sqrt{2}}{2}\)

\(\alpha+\beta\in [\cfrac{5\pi}{4},2\pi]\),故\(\alpha+\beta=\cfrac{7\pi}{4}\),故选\(A\).

定义运算:\(\left |\begin{array}{cccc}a&b \\c&d\end{array}\right |=ad-bc\),若\(cos\alpha=\cfrac{1}{7}\)\(\left |\begin{array}{cccc}sin\alpha&sin\beta \\cos\alpha&cos\beta\end{array}\right |=\cfrac{3\sqrt{3}}{14}\)\(0<\beta<\alpha<\cfrac{\pi}{2}\),则\(\beta\)等于【】

$A.\cfrac{\pi}{12}$ $B.\cfrac{\pi}{6}$ $C.\cfrac{\pi}{4}$ $D.\cfrac{\pi}{3}$

分析:有题目可知,\(sin\alpha cos\beta-cos\alpha sin\beta=sin(\alpha-\beta)=\cfrac{3\sqrt{3}}{14}\)

\(0<\beta<\alpha<\cfrac{\pi}{2}\),则\(0<\alpha-\beta<\cfrac{\pi}{2}\),故\(cos(\alpha-\beta)=\cfrac{13}{14}\)

\(cos\alpha=\cfrac{1}{7}\),则\(sin\alpha=\cfrac{4\sqrt{3}}{7}\)

\(sin\beta=sin[\alpha-(\alpha-\beta)]=sin\alpha cos(\alpha-\beta)-cos\alpha sin(\alpha-\beta)=\cfrac{4\sqrt{3}}{7}\times \cfrac{13}{14}-\cfrac{1}{7}\times \cfrac{3\sqrt{3}}{14}=\cfrac{\sqrt{3}}{2}\)

又由于\(0<\beta<\cfrac{\pi}{2}\),故\(\beta=\cfrac{\pi}{3}\)

已知\(\alpha,\beta\in (0,\pi)\),且\(tan(\alpha-\beta)=\cfrac{1}{2}\)\(tan\beta=-\cfrac{1}{7}\),则\(2\alpha-\beta\)的值为________。

分析:由已知\(\alpha\in (0,\pi)\)\(tan\alpha=tan[(\alpha-\beta)+\beta]=\cfrac{1}{3}>0\),则\(\alpha\in (0,\cfrac{\pi}{2})\)

又由于\(tan2\alpha=\cdots=\cfrac{3}{4}\),则\(0<2\alpha<\cfrac{\pi}{2}\)

又由于\(tan\beta=-\cfrac{1}{7}\)\(\beta\in (0,\pi)\),则\(\cfrac{\pi}{2}<\beta<\pi\)

\(tan(2\alpha-\beta)=\cdots=1\)

又由于\(0<2\alpha<\cfrac{\pi}{2}\)\(\cfrac{\pi}{2}<\beta<\pi\)

\(-\pi<2\alpha-\beta<0\),故\(2\alpha-\beta=-\cfrac{3\pi}{4}\)

已知\(tan\alpha\)\(tan\beta\)是方程\(x^2+3\sqrt{3}x+4=0\)的两个根,且\(\alpha\)\(\beta\in (-\cfrac{\pi}{2},\cfrac{\pi}{2})\),则\(\alpha+\beta\)等于【】

$A.-\cfrac{2\pi}{3}$ $B.-\cfrac{2\pi}{3}或\cfrac{\pi}{3}$ $C.-\cfrac{\pi}{3}或\cfrac{2\pi}{3}$ $D.\cfrac{\pi}{3}$

分析:由韦达定理可知,\(tan\alpha+tan\beta=-3\sqrt{3}\)\(tan\alpha\cdot tan\beta=4\)

结合符号法则可知,\(tan\alpha<0\)\(tan\beta<0\),则由此可以压缩角的范围,\(\alpha\)\(\beta\in (-\cfrac{\pi}{2},0)\)

由此知道,\(\alpha+\beta\in (-\pi,0)\),接下来求其某一个三角函数的值,结合本题题设可知,需要求\(tan(\alpha+\beta)\);

\(tan(\alpha+\beta)=\cfrac{tan\alpha+tan\beta}{1-tan\alpha\cdot tan\beta}=\cfrac{-3\sqrt{3}}{1-4}=\sqrt{3}\)

结合上述范围,\(\alpha+\beta\in (-\pi,0)\),则得到\(\alpha+\beta=-\cfrac{2\pi}{3}\),故选\(A\).

【使用三角函数的定义,给值求角类型】已知\(\beta\)是钝角且\(cos\beta=-\cfrac{\sqrt{5}}{5}\),若点\(A(1,3)\)是锐角\(\alpha\)终边上的一点,则\(\alpha-\beta\)=_____.

分析:\(\beta\)是钝角且\(cos\beta=-\cfrac{\sqrt{5}}{5}=-\cfrac{1}{\sqrt{5}}=\cfrac{x}{r}\),结合三角函数的定义可知\(\beta\)的终边上某点的坐标为\((-1,2)\)\(r=\sqrt{5}\),则\(sin\beta=\cfrac{2}{\sqrt{5}}\)

锐角\(\alpha\)终边上的一点\(A(1,3)\),则\(r=\sqrt{10}\)\(sin\alpha=\cfrac{3}{\sqrt{10}}\)\(cos\alpha=\cfrac{1}{\sqrt{10}}\)

由于\(sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta=\cdots=-\cfrac{\sqrt{2}}{2}\)

\(cos\beta=-\cfrac{1}{\sqrt{5}}>-\cfrac{\sqrt{2}}{2}=cos\cfrac{3\pi}{4}\),可以将范围压缩为\(\beta\in (\cfrac{\pi}{2},\cfrac{3\pi}{4})\)

\(sin\alpha=\cfrac{3}{\sqrt{10}}>\cfrac{\sqrt{2}}{2}=sin\cfrac{\pi}{4}\),可以将范围压缩为\(\alpha\in (\cfrac{\pi}{4},\cfrac{\pi}{2})\)

故由不等式性质得到\(\alpha-\beta\in (-\cfrac{\pi}{2},0)\),故\(\alpha-\beta=-\cfrac{\pi}{4}\)

难点破解

  • 求角的某种三角函数函数时的选择策略:

①从题目所给的值来看,简单记为给弦选弦,给切选切;

所给的值是正弦和余弦,则往往函数选择\(sin\)\(cos\)

所给的值是正切,则往往函数选择\(tan\)

②从题目所求的角来看,[利用单调性这样就会一个萝卜一个坑,不担心多值的情形。]

若角的范围是\(\theta\in (0,\pi)\),则选\(cos\theta\)

若角的范围是\(\theta\in (-\cfrac{\pi}{2},\cfrac{\pi}{2})\),则选\(sin\theta\)

若角的范围是\(\theta\in (0,\cfrac{\pi}{2})\),则选\(cos\theta\)或者\(sin\theta\)

【2020 \(\cdot\) 湖北八校联考】已知 \(3\pi\leqslant\theta\leqslant 4\pi\),且 \(\sqrt{\cfrac{1+\cos\theta}{2}}+\sqrt{\cfrac{1-\cos\theta}{2}}=\cfrac{\sqrt{6}}{2}\), 则 \(\theta\)=【\(\quad\)

$A.\cfrac{10\pi}{3}或\cfrac{11\pi}{3}$ $B.\cfrac{37\pi}{12}或\cfrac{47\pi}{12}$ $C.\cfrac{13\pi}{4}或\cfrac{15\pi}{4}$ $D.\cfrac{19\pi}{6}或\cfrac{23\pi}{6}$

解析:由于\(3\pi\leqslant\theta\leqslant 4\pi\),则\(\cfrac{3\pi}{2}\leqslant \cfrac{\theta}{2}\leqslant 2\pi\),所以\(\cos\cfrac{\theta}{2}>0\)\(\sin \cfrac{\theta}{2}<0\)

\(\sqrt{\cfrac{1+\cos\theta}{2}}+\sqrt{\cfrac{1-\cos \theta}{2}}=\sqrt{\cos^{2}\cfrac{\theta}{2}}+\sqrt{\sin^{2}\cfrac{\theta}{2}}\)

\(=\cos \cfrac{\theta}{2}-\sin\cfrac{\theta}{2}=\sqrt{2}\cos(\cfrac{\theta}{2}+\cfrac{\pi}{4})=\cfrac{\sqrt{6}}{2}\)

\(\cos(\cfrac{\theta}{2}+\cfrac{\pi}{4})=\cfrac{\sqrt{3}}{2}\),然后解三角方程即可;

\(\cfrac{\theta}{2}+\cfrac{\pi}{4}=\cfrac{\pi}{6}+2k\pi\)\(\cfrac{\theta}{2}+\cfrac{\pi}{4}=-\cfrac{\pi}{6}+2k\pi\)\(k\in Z\)

\(\theta=-\cfrac{\pi}{6}+4k\pi\)\(\theta=-\cfrac{5\pi}{6}+4k\pi\)\(k\in Z\)

由于 \(3\pi\leqslant\theta\leqslant 4\pi\), 故\(\theta=\cfrac{19\pi}{6}\)\(\cfrac{23 \pi}{6}\),故选\(D\).

posted @ 2020-11-19 15:45  静雅斋数学  阅读(726)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋