• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
Vpegasus
E-mail: pegasus.wenjia@foxmail.com
博客园    首页    新随笔    联系   管理    订阅  订阅
2018年8月13日
强化学习(九):策略梯度
摘要: Policy Gradient Methods 之前学过的强化学习几乎都是所谓的‘行动-价值’方法,也就是说这些方法先是学习每个行动在特定状态下的价值,之后在每个状态,根据当每个动作的估计价值进行选择。这种方法可看成是一种‘间接’的方法,因为强化学习的目标是如何决策,这些方法把每个动作的价值作为指标 阅读全文
posted @ 2018-08-13 00:10 Vpegasus 阅读(2761) 评论(0) 推荐(0)
强化学习(八):Eligibility Trace
摘要: Eligibility Traces Eligibility Traces是强化学习中很基本很重要的一个概念。几乎所有的TD算法可以结合eligibility traces获得更一般化的算法,并且通常会更有效率。 Eligibility traces可以将TD和Monte Carlo算法统一起来。之 阅读全文
posted @ 2018-08-13 00:09 Vpegasus 阅读(1434) 评论(0) 推荐(0)
强化学习(七):计划与学习的关系
摘要: Planning and Learning with Tabular Methods 在强化学习中有一种划分方式可以将算法大体分成两大类,一类是需要模型来刻画环境的算法(model based),如动态编程和启发等;另一类算法则不需要环境模型(model free),如MC与TD等。model ba 阅读全文
posted @ 2018-08-13 00:06 Vpegasus 阅读(1363) 评论(0) 推荐(0)
强化学习(六):n-step Bootstrapping
摘要: n step Bootstrapping n step 方法将Monte Carlo 与 one step TD统一起来。 n step 方法作为 eligibility traces 的引入,eligibility traces 可以同时的在很多时间间隔进行bootstrapping. n ste 阅读全文
posted @ 2018-08-13 00:02 Vpegasus 阅读(1059) 评论(0) 推荐(0)
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3