摘要: 1. 摘要 ReLU 相比 Tanh 能产生相同或者更好的性能,而且能产生真零的稀疏表示,非常适合自然就稀疏的数据。 采用 ReLU 后,在大量的有标签数据下,有没有无监督预训练模型取得的最好效果是一样的,这可以被看做是训练深层有监督网络的一个新的里程碑。 2. 背景 2.1. 神经元科学的观察 对 阅读全文
posted @ 2019-04-19 16:39 seniusen 阅读(1077) 评论(0) 推荐(0)