随笔分类 - Network
摘要:
链路聚合是链路高可用的一种方式,它不仅可以有冗余备份的链路来提高链路的可靠性,同时也可以将多个链路聚合在一起,使得链路的带宽增加;我们知道随着网络规模不断扩大,用户对骨干链路的带宽和可靠性提出了越来越高的要求;在传统技术中,常用更换更高速率的接口板或更换支持高速率接口板的设备的方式来增加带宽,但这种方案需要付出额外的费用,而且不够灵活;采用链路聚合技术可以在不进行硬件升级的条件下,通过将多个物理接口捆绑为一个逻辑接口,来达到增加链路带宽的目的;在实现增大带宽目的的同时,链路聚合采用备份链路的机制,可以有效提高设备之间链路的可靠性;
阅读全文
链路聚合是链路高可用的一种方式,它不仅可以有冗余备份的链路来提高链路的可靠性,同时也可以将多个链路聚合在一起,使得链路的带宽增加;我们知道随着网络规模不断扩大,用户对骨干链路的带宽和可靠性提出了越来越高的要求;在传统技术中,常用更换更高速率的接口板或更换支持高速率接口板的设备的方式来增加带宽,但这种方案需要付出额外的费用,而且不够灵活;采用链路聚合技术可以在不进行硬件升级的条件下,通过将多个物理接口捆绑为一个逻辑接口,来达到增加链路带宽的目的;在实现增大带宽目的的同时,链路聚合采用备份链路的机制,可以有效提高设备之间链路的可靠性;
阅读全文
摘要:
我们知道RSTP在STP的基础上进行了改进,实现了网络拓扑快速收敛;但是由于局域网内所有vlan共享一棵生成树,因此被阻塞后的链路将不承载任何流量,无法实现vlan间流量的负载分担,从而造成带宽浪费;除此以外,部分vlan间通讯也可能出现次优路径;为了弥补STP和RSTP的这些缺陷,IEEE于2002年发布的802.1s标准定义了MSTP;MSTP兼容STP和RSTP,即可以实现快速收敛,又提供了数据转发的多条冗余路径,在数据转发过程中实现了VLAN数据的负载分担;
阅读全文
我们知道RSTP在STP的基础上进行了改进,实现了网络拓扑快速收敛;但是由于局域网内所有vlan共享一棵生成树,因此被阻塞后的链路将不承载任何流量,无法实现vlan间流量的负载分担,从而造成带宽浪费;除此以外,部分vlan间通讯也可能出现次优路径;为了弥补STP和RSTP的这些缺陷,IEEE于2002年发布的802.1s标准定义了MSTP;MSTP兼容STP和RSTP,即可以实现快速收敛,又提供了数据转发的多条冗余路径,在数据转发过程中实现了VLAN数据的负载分担;
阅读全文
摘要:
我们知道RSTP优化了STP收敛速度,同时也加入了边缘端口的机制,但是如果有人恶意使用stp特有的属性发起攻击,对于STP网络来说它也会造成网络不稳定;为了更好的保证RSTP协议在网络不稳定情况下,尽可能的保证流量的正常转发,在标准协议中新增了4中保护功能;
阅读全文
我们知道RSTP优化了STP收敛速度,同时也加入了边缘端口的机制,但是如果有人恶意使用stp特有的属性发起攻击,对于STP网络来说它也会造成网络不稳定;为了更好的保证RSTP协议在网络不稳定情况下,尽可能的保证流量的正常转发,在标准协议中新增了4中保护功能;
阅读全文
摘要:
RSTP(Rapid spanning Tree Protocol,快速生成树协议),它是从STP发展而来,实现的基本思想和STP一致,都是通过阻断冗余链路来消除网络中可能存在的环路,同时当活动链路发生故障时,激活冗余链路及时恢复网络连通性,从而实现网络的可靠性;RSTP具备STP的所有功能,可以兼容STP;RSTP不同于STP,最大的特点就是比STP快;RSTP通过减少了端口状态、增加端口角色、BPDU格式及发送方式不同,当交换网络拓扑结构发生变化时,RSTP可以更快地恢复网络的连通性;
阅读全文
RSTP(Rapid spanning Tree Protocol,快速生成树协议),它是从STP发展而来,实现的基本思想和STP一致,都是通过阻断冗余链路来消除网络中可能存在的环路,同时当活动链路发生故障时,激活冗余链路及时恢复网络连通性,从而实现网络的可靠性;RSTP具备STP的所有功能,可以兼容STP;RSTP不同于STP,最大的特点就是比STP快;RSTP通过减少了端口状态、增加端口角色、BPDU格式及发送方式不同,当交换网络拓扑结构发生变化时,RSTP可以更快地恢复网络的连通性;
阅读全文
摘要:
super-vlan只建立一个三层VLANIF接口,不包含物理接口(即回环接口),与之对应为网关;Super-VLAN负责实现所有Sub-VLAN共享一个三层接口的需求,使不同Sub-VLAN内地主机可以共用同一个网关;sub-vlan只包含物理接口,不建立三层VLANIF接口,隔离广播域;一个Super-VLAN可以包含一个或多个Sub-VLAN;它只映射物理接口,负责保留各自独立的广播域;
阅读全文
super-vlan只建立一个三层VLANIF接口,不包含物理接口(即回环接口),与之对应为网关;Super-VLAN负责实现所有Sub-VLAN共享一个三层接口的需求,使不同Sub-VLAN内地主机可以共用同一个网关;sub-vlan只包含物理接口,不建立三层VLANIF接口,隔离广播域;一个Super-VLAN可以包含一个或多个Sub-VLAN;它只映射物理接口,负责保留各自独立的广播域;
阅读全文
摘要:
MUX VLAN 也是一种vlan隔离技术,相对于同VLAN内的端口隔离,它更灵活;它能实现部分VLAN间可以互通、部分VLAN间隔离,同时也可以实现VLAN内端口隔离;它也是通过vlan进行网络资源控制的一种机制,只适用于二层网络中,对同一网段的用户进行隔离(注意,是同一网段)和互通;简单说MUX VLAN实现了处于相同网段的设备划入不同VLAN后,虽然二层通信是隔离的,但可以和指定vlan通信,还可以实现禁止相同VLAN内地不同设备间的通信;
阅读全文
MUX VLAN 也是一种vlan隔离技术,相对于同VLAN内的端口隔离,它更灵活;它能实现部分VLAN间可以互通、部分VLAN间隔离,同时也可以实现VLAN内端口隔离;它也是通过vlan进行网络资源控制的一种机制,只适用于二层网络中,对同一网段的用户进行隔离(注意,是同一网段)和互通;简单说MUX VLAN实现了处于相同网段的设备划入不同VLAN后,虽然二层通信是隔离的,但可以和指定vlan通信,还可以实现禁止相同VLAN内地不同设备间的通信;
阅读全文
摘要:
所谓代理ARP是指,如果ARP请求是从一个网络的主机发往同一网段,却不再同一物理物理网络上的另一台主机(即相互隔离的同一网段内的主机),那么连接它们的具有代理ARP功能的设备就可以回答该请求,这个过程就叫做代理ARP(Proxy ARP);代理ARP屏蔽了分离的物理网络,使用户使用起来就好像在同一物理网络上一样;代理ARP可以分为两大类,一类是连接相同三层接口的本地代理和连接不同三层接口的普通代理arp;
阅读全文
所谓代理ARP是指,如果ARP请求是从一个网络的主机发往同一网段,却不再同一物理物理网络上的另一台主机(即相互隔离的同一网段内的主机),那么连接它们的具有代理ARP功能的设备就可以回答该请求,这个过程就叫做代理ARP(Proxy ARP);代理ARP屏蔽了分离的物理网络,使用户使用起来就好像在同一物理网络上一样;代理ARP可以分为两大类,一类是连接相同三层接口的本地代理和连接不同三层接口的普通代理arp;
阅读全文
摘要:
所谓端口隔离就是指在同一vlan内端口之间的隔离,它是交换机端口之间的一种安全访问控制机制,配置端口隔离后,无论是那个vlan都不能互相通信;
阅读全文
所谓端口隔离就是指在同一vlan内端口之间的隔离,它是交换机端口之间的一种安全访问控制机制,配置端口隔离后,无论是那个vlan都不能互相通信;
阅读全文
摘要:
我们知道在RPT里,所有组播数据流都会通过RP转发到接收者;对于一个RP来说,它可以同时服务于多个组播组,但一个组播组只能对应一个唯一的RP;所谓RP就是RPT(Rendezvous Point Tree)里的RP(Rendezvous Point),即汇合点;所有的组播源和接收者都是以该点为树根所形成的数据转发路径(RPT)来转发报文,组播源先向树根发送数据报文,之后的报文再向下转发到达所有接收者;
阅读全文
我们知道在RPT里,所有组播数据流都会通过RP转发到接收者;对于一个RP来说,它可以同时服务于多个组播组,但一个组播组只能对应一个唯一的RP;所谓RP就是RPT(Rendezvous Point Tree)里的RP(Rendezvous Point),即汇合点;所有的组播源和接收者都是以该点为树根所形成的数据转发路径(RPT)来转发报文,组播源先向树根发送数据报文,之后的报文再向下转发到达所有接收者;
阅读全文
摘要:
连接接收者的路由器向组播组对应的RP发送加入报文,该报文被逐跳送达RP,所经过的路径就形成了RPT的分支;组播源如果要想组播组发送组播数据,首先由于组播源侧DR负责向RP进行注册,把注册报文通过单播的方式发送给RP,该报文到达RP后触发构建SPT。之后组播源把组播数据沿着SPT发向RP,但组播数据达到RP后,被复制并沿着RPT发送给接收者;
阅读全文
连接接收者的路由器向组播组对应的RP发送加入报文,该报文被逐跳送达RP,所经过的路径就形成了RPT的分支;组播源如果要想组播组发送组播数据,首先由于组播源侧DR负责向RP进行注册,把注册报文通过单播的方式发送给RP,该报文到达RP后触发构建SPT。之后组播源把组播数据沿着SPT发向RP,但组播数据达到RP后,被复制并沿着RPT发送给接收者;
阅读全文
摘要:
PIM(Protocol Independent Multicast,翻译成中文就是协议无关组播);所谓协议无关是指给组播提供路由信息的可以是静态路由、RIP、OSPF、IS-IS、BGP等任何一种单播路由协议;这里的无关是指组播路由与是何种单播路由协议无关;只要通过单播路由能够产生对应组播路由表项即可;之所以PIM高度依赖单播来生成组播路由表项,是因为组播路由是利用单播路由表的路由信息进行组播报文RPF检查,从而来创建组播路由表项,转发组播报文;
阅读全文
PIM(Protocol Independent Multicast,翻译成中文就是协议无关组播);所谓协议无关是指给组播提供路由信息的可以是静态路由、RIP、OSPF、IS-IS、BGP等任何一种单播路由协议;这里的无关是指组播路由与是何种单播路由协议无关;只要通过单播路由能够产生对应组播路由表项即可;之所以PIM高度依赖单播来生成组播路由表项,是因为组播路由是利用单播路由表的路由信息进行组播报文RPF检查,从而来创建组播路由表项,转发组播报文;
阅读全文
摘要:
RPF(Reverse Path Forwarding),反向路径转发;该机制主要作用是用来确保组播数据能够沿正确的路径传输,避免组播环路;工作过程大致是路由器收到组播数据报文后,只有确认这个数据报文是从自身连接到组播源的接口收到的才进行转发,否则丢弃;即路由器只有通过路由接口收到组播源的数据才会转发,其他非路由接口收到的数据均丢弃;
阅读全文
RPF(Reverse Path Forwarding),反向路径转发;该机制主要作用是用来确保组播数据能够沿正确的路径传输,避免组播环路;工作过程大致是路由器收到组播数据报文后,只有确认这个数据报文是从自身连接到组播源的接口收到的才进行转发,否则丢弃;即路由器只有通过路由接口收到组播源的数据才会转发,其他非路由接口收到的数据均丢弃;
阅读全文
摘要:
我们知道二层交换机在单播通信中的工作原理就是根据构建mac地址表来转发数据,如果二层交换机收到一个未知的单播或广播报文,那么它会泛洪出去;对于组播信息它会如何处理呢?其实二层交换机收到组播报文,默认情况下,它会把组播报文当作广播处理,即 收到组播报文,它会泛洪出去;这样一来对于接入同一二层交换机的组播客户端,在没有加入对应组播组的情况下也会照常收到组播源发送的组播报文;很显然,这无形是对那些不需要接收对应组播报文的客户端的带宽造成浪费,拥堵;为了解决这样的问题;igmp-snooping出现了;igmp-snooping的主要作用是嗅探组播信息,从而根据组播信息建立起组播mac地址表,从而实现隔离那些未加入对应组播组的客户端流量;简单讲就是,有了igmp snooping,在同一二层交换机收到对应组播报文,它不会全局泛洪,而是根据对应的组播mac表来转发数据,从而规避了全局泛洪所带来的困扰;
阅读全文
我们知道二层交换机在单播通信中的工作原理就是根据构建mac地址表来转发数据,如果二层交换机收到一个未知的单播或广播报文,那么它会泛洪出去;对于组播信息它会如何处理呢?其实二层交换机收到组播报文,默认情况下,它会把组播报文当作广播处理,即 收到组播报文,它会泛洪出去;这样一来对于接入同一二层交换机的组播客户端,在没有加入对应组播组的情况下也会照常收到组播源发送的组播报文;很显然,这无形是对那些不需要接收对应组播报文的客户端的带宽造成浪费,拥堵;为了解决这样的问题;igmp-snooping出现了;igmp-snooping的主要作用是嗅探组播信息,从而根据组播信息建立起组播mac地址表,从而实现隔离那些未加入对应组播组的客户端流量;简单讲就是,有了igmp snooping,在同一二层交换机收到对应组播报文,它不会全局泛洪,而是根据对应的组播mac表来转发数据,从而规避了全局泛洪所带来的困扰;
阅读全文
摘要:
相对IGMPv1,IGMPv2使用独立的查询器选举机制;所有IGMPv2的路由器在初始状态时都认为自己是查询器,向本地网段内的所有主机和路由器发送普遍组查询报文;其他路由器在收到该报文后,将报文的源ip地址与自己的接口地址作比较;ip地址最小的路由器将被选举成查询器,其他路由器成为非查询器;如上图所示,RTA的接口ip地址小于RTB的接口ip地址,则RTA当选为查询器;IGMP的查询器和非查询器都会处理IGMP组加入信息,但是只有查询器负责发送查询报文;IGMP非查询器不处理IGMPv2离开报文;所有非查询器上都会启动一个定时器,如果在该定时器超时前收到了来自查询器的查询报文,则重置该定时器;否则就认为原查询器失效并发起新的查询器选举;
阅读全文
相对IGMPv1,IGMPv2使用独立的查询器选举机制;所有IGMPv2的路由器在初始状态时都认为自己是查询器,向本地网段内的所有主机和路由器发送普遍组查询报文;其他路由器在收到该报文后,将报文的源ip地址与自己的接口地址作比较;ip地址最小的路由器将被选举成查询器,其他路由器成为非查询器;如上图所示,RTA的接口ip地址小于RTB的接口ip地址,则RTA当选为查询器;IGMP的查询器和非查询器都会处理IGMP组加入信息,但是只有查询器负责发送查询报文;IGMP非查询器不处理IGMPv2离开报文;所有非查询器上都会启动一个定时器,如果在该定时器超时前收到了来自查询器的查询报文,则重置该定时器;否则就认为原查询器失效并发起新的查询器选举;
阅读全文
摘要:
一个组播组就是一个ip地址,不代表具体主机,而是表示一系列系统的集合;主机加入某个主播组即声明自己接收目的为某个ip地址的报文;组播地址在ip地址中是属于D类地址;其范围是224.0.0.0至239.255.255.255;这个范围内的所有地址都属于组播地址;组播地址和广播地址都只能作为目标地址,不能成为源地址出现在网络通信中;
阅读全文
一个组播组就是一个ip地址,不代表具体主机,而是表示一系列系统的集合;主机加入某个主播组即声明自己接收目的为某个ip地址的报文;组播地址在ip地址中是属于D类地址;其范围是224.0.0.0至239.255.255.255;这个范围内的所有地址都属于组播地址;组播地址和广播地址都只能作为目标地址,不能成为源地址出现在网络通信中;
阅读全文
摘要:
我们知道网络通信中分单播、组播、广播这三种;其中单播主要用在点到点通信中,而后者的广播和组播多用在点到多点的环境中;当网络中部署点到多点通信应用时,若采用单播时,网络传输的信息量与需要该信息的用户量成正比;即多份相同内容的信息发送给不同用户,对信息源及网络带宽都将造成巨大压力和浪费。若采用广播方式,无需接收信息的主机也将收到该信息,这样不仅信息安全得不到保障,同时造成同一网络中的信息泛滥;正是因为单播和广播不能很好的解决点到多点应用通信问题,ip组播技术有效地解决了单播和广播在点到多点应用中的问题;组播源只发送一份数据,数据在网络节点间被复制、分发,且只发送给需要该信息的接收者,即只有加入到对应组播中的成员才能接收到对应信息;
阅读全文
我们知道网络通信中分单播、组播、广播这三种;其中单播主要用在点到点通信中,而后者的广播和组播多用在点到多点的环境中;当网络中部署点到多点通信应用时,若采用单播时,网络传输的信息量与需要该信息的用户量成正比;即多份相同内容的信息发送给不同用户,对信息源及网络带宽都将造成巨大压力和浪费。若采用广播方式,无需接收信息的主机也将收到该信息,这样不仅信息安全得不到保障,同时造成同一网络中的信息泛滥;正是因为单播和广播不能很好的解决点到多点应用通信问题,ip组播技术有效地解决了单播和广播在点到多点应用中的问题;组播源只发送一份数据,数据在网络节点间被复制、分发,且只发送给需要该信息的接收者,即只有加入到对应组播中的成员才能接收到对应信息;
阅读全文
摘要:
BGP团体属性是什么呢?简单讲BGP的团体属性是指标识具有相同特征的BGP路由;我们可以理解为具有相同标签的BGP路由;这个标签就是它的团体属性;只不过在BGP里不叫标签,而是叫团体属性;所以tag不是BGP属性,而团体属性(community)才是它的属性;团体属性主要作用是让BGP路由策略的应用更加灵活,降低维护管理的难度;不同的团体属性,它的作用各不相同;
阅读全文
BGP团体属性是什么呢?简单讲BGP的团体属性是指标识具有相同特征的BGP路由;我们可以理解为具有相同标签的BGP路由;这个标签就是它的团体属性;只不过在BGP里不叫标签,而是叫团体属性;所以tag不是BGP属性,而团体属性(community)才是它的属性;团体属性主要作用是让BGP路由策略的应用更加灵活,降低维护管理的难度;不同的团体属性,它的作用各不相同;
阅读全文
摘要:
AS-Path-Filter:从名字上就能知道该过滤器主要用于通过匹配AS-Path属性来进行路由过滤;对于满足过滤器的条件我们就做某种操作即可;对于as-path过滤器来说,它是通过正则表达式来匹配对应as-path;工作原理就是把对应路由的as-path当作字符串处理,满足正则表达式的路由进行拒绝或允许操作;
阅读全文
AS-Path-Filter:从名字上就能知道该过滤器主要用于通过匹配AS-Path属性来进行路由过滤;对于满足过滤器的条件我们就做某种操作即可;对于as-path过滤器来说,它是通过正则表达式来匹配对应as-path;工作原理就是把对应路由的as-path当作字符串处理,满足正则表达式的路由进行拒绝或允许操作;
阅读全文
摘要:
BGP可以结合几乎所有的策略工具,并利用BGP路径属性,来影响BGP选路;我们知道BGP的优选规则,它是依次比较首选值、本地优先级、聚合方式、AS_Path、起源属性优先级、med、邻居类型、内部IGP开销、router-id、IP地址这些属性;所以我们要影响BGP选路就可以通过修改这些属性即可;当然不是所有的属性都可以手动修改,比如起源属性,这个属性就是宣告网络时就决定了;再比如邻居类型,这个也是无法修改的,这个属性和网络拓扑密切相关;一般常修改,优选值、本地优先级、as_path长度、MED;
阅读全文
BGP可以结合几乎所有的策略工具,并利用BGP路径属性,来影响BGP选路;我们知道BGP的优选规则,它是依次比较首选值、本地优先级、聚合方式、AS_Path、起源属性优先级、med、邻居类型、内部IGP开销、router-id、IP地址这些属性;所以我们要影响BGP选路就可以通过修改这些属性即可;当然不是所有的属性都可以手动修改,比如起源属性,这个属性就是宣告网络时就决定了;再比如邻居类型,这个也是无法修改的,这个属性和网络拓扑密切相关;一般常修改,优选值、本地优先级、as_path长度、MED;
阅读全文
摘要:
BGP路由优选的首要条件是对应路由的下一跳必须可达,即只会在BGP路由表中对应路由有星号的路由上进行优选;满足下一跳可达的前提下,首先优选首选值(Preference_Value)最高的路由(该属性为私有属性,仅在本地有效,一般不常修改来影响路由选路);如果首选值一样,则对比本地优先级(Local_Preference),本地优先级最高的路由被优选;如果本地优先级一样,则比较聚合方式,聚合方式是手动聚合大于自动聚合,大于本地network宣告,大于引入宣告,大于从邻居学习到的路由;如果聚合方式一样,则比较AS_Path长度,AS_Path最短的路由被优选(这里的AS_Path最短是指经过的as数量最少,并非as号码长度);如果AS_Path长度一样,则比较起源属性,起源属性优先级是本地宣告大于引入宣告;如果起源属性也一样,则比较来自同一AS的路由,优选MED最小的路由;如果MED也一样,则比对邻居类型,邻居类型优选顺序是EBGP类型邻居大于IBGP类型邻居;如果邻居类型也一样,则优选AS内部IGP的开销最小的路由;即比较去往对应下一跳的开销;去往对应下一跳开销小的路由被优选;
阅读全文
BGP路由优选的首要条件是对应路由的下一跳必须可达,即只会在BGP路由表中对应路由有星号的路由上进行优选;满足下一跳可达的前提下,首先优选首选值(Preference_Value)最高的路由(该属性为私有属性,仅在本地有效,一般不常修改来影响路由选路);如果首选值一样,则对比本地优先级(Local_Preference),本地优先级最高的路由被优选;如果本地优先级一样,则比较聚合方式,聚合方式是手动聚合大于自动聚合,大于本地network宣告,大于引入宣告,大于从邻居学习到的路由;如果聚合方式一样,则比较AS_Path长度,AS_Path最短的路由被优选(这里的AS_Path最短是指经过的as数量最少,并非as号码长度);如果AS_Path长度一样,则比较起源属性,起源属性优先级是本地宣告大于引入宣告;如果起源属性也一样,则比较来自同一AS的路由,优选MED最小的路由;如果MED也一样,则比对邻居类型,邻居类型优选顺序是EBGP类型邻居大于IBGP类型邻居;如果邻居类型也一样,则优选AS内部IGP的开销最小的路由;即比较去往对应下一跳的开销;去往对应下一跳开销小的路由被优选;
阅读全文

浙公网安备 33010602011771号