随笔分类 - 常用工具
摘要:在本章中,我们将讨论如何切割和丢弃日期,并获取Pandas中大对象的子集。 Python和NumPy索引运算符"[]"和属性运算符"."。 可以在广泛的用例中快速轻松地访问Pandas数据结构。然而,由于要访问的数据类型不是预先知道的,所以直接使用标准运算符具有一些优化限制。对于生产环境的代码,我们
阅读全文
摘要:Pandas提供API来自定义其行为的某些方面,大多使用来显示。 API由五个相关函数组成。它们分别是 - get_option() set_option() reset_option() describe_option() option_context() 现在来了解函数是如何工作的。 get_o
阅读全文
摘要:在本章中,我们将使用基本系列/索引来讨论字符串操作。在随后的章节中,将学习如何将这些字符串函数应用于数据帧(DataFrame)。 Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作。 最重要的是,这些函数忽略(或排除)丢失/NaN值。 几乎这些方法都使用Python字符串函数(请参阅
阅读全文
摘要:Pandas有两种排序方式,它们分别是 - 按标签 按实际值 下面来看看一个输出的例子。 Python Python 执行上面示例代码,得到以下结果 - Shell Shell 在unsorted_df数据值中,标签和值未排序。下面来看看如何按标签来排序。 按标签排序 使用sort_index()方
阅读全文
摘要:Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame和Panel,遵循类似惯例迭代对象的键。 简而言之,基本迭代(对于i在对象中)产生 - Series - 值 DataFrame - 列标签 Pannel - 项
阅读全文
摘要:重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。 可以通过索引来实现多个操作 - 重新排序现有数据以匹配一组新的标签。 在没有标签数据的标签位置插入缺失值(NA)标记。 示例 Python Python 执行上面示例代码,得到以下结果 - Sh
阅读全文
摘要:要将自己或其他库的函数应用于Pandas对象,应该了解三种重要的方法。以下讨论了这些方法。 使用适当的方法取决于函数是否期望在整个DataFrame,行或列或元素上进行操作。 表明智函数应用:pipe() 行或列函数应用:apply() 元素函数应用:applymap() 表格函数应用 可以通过将函
阅读全文
摘要:有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作。 其中大多数是sum(),mean()等聚合函数,但其中一些,如sumsum(),产生一个相同大小的对象。 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...},但轴可以通过名称或整数来指定: 数据帧(D
阅读全文
摘要:到目前为止,我们了解了三种Pandas数据结构以及如何创建它们。接下来将主要关注数据帧(DataFrame)对象,因为它在实时数据处理中非常重要,并且还讨论其他数据结构。 系列基本功能 现在创建一个系列并演示如何使用上面所有列出的属性操作。 示例 Python Python 执行上面示例代码,得到以
阅读全文
摘要:面板(Panel)是3D容器的数据。面板数据一词来源于计量经济学,部分源于名称:Pandas - pan(el)-da(ta)-s。 3轴(axis)这个名称旨在给出描述涉及面板数据的操作的一些语义。它们是 - items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。 m
阅读全文
摘要:数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列。 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 结构体 假设要创建一个包含学生数据的数据帧。参考以下图示 - 可以将上图表视为SQL表或电子表格数据表示。
阅读全文
摘要:系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。 pandas.Series Pandas系列可以使用以下构造函数创建 - Python Python 构造函数的参数如下 - 可以使用各种输入创建一个系列,如 - 数组 字典
阅读全文
摘要:这是一个Pandas快速入门教程,主要面向新用户。这里主要是为那些喜欢“短平快”的读者准备的,有兴趣的读者可通过其它教程文章来一步一步地更复杂的应用知识。 首先,假设您安装好了Anaconda,现在启动Anaconda开始学始本教程中的示例。工作界面如下所示 - 测试工作环境是否有安装好了Panda
阅读全文
摘要:Pandas处理以下三个数据结构 - 系列(Series) 数据帧(DataFrame) 面板(Panel) 这些数据结构构建在Numpy数组之上,这意味着它们很快。 维数和描述 考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器。 例如,DataFrame是Series的容器,P
阅读全文
摘要:NumPy - IO ndarray对象可以保存到磁盘文件并从磁盘文件加载。 可用的 IO 功能有: load()和save()函数处理 numPy 二进制文件(带npy扩展名) loadtxt()和savetxt()函数处理正常的文本文件 load()和save()函数处理 numPy 二进制文件
阅读全文
摘要:NumPy - Matplotlib Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。 Matplotlib 模块最初是由 John D. Hunter
阅读全文
摘要:NumPy - 使用 Matplotlib 绘制直方图 NumPy 有一个numpy.histogram()函数,它是数据的频率分布的图形表示。 水平尺寸相等的矩形对应于类间隔,称为bin,变量height对应于频率。 numpy.histogram() numpy.histogram()函数将输入
阅读全文
摘要:NumPy - 线性代数 NumPy 包包含numpy.linalg模块,提供线性代数所需的所有功能。 此模块中的一些重要功能如下表所述。 numpy.dot() 此函数返回两个数组的点积。 对于二维向量,其等效于矩阵乘法。 对于一维数组,它是向量的内积。 对于 N 维数组,它是a的最后一个轴上的和
阅读全文
摘要:NumPy - 矩阵库 NumPy 包包含一个 Matrix库numpy.matlib。此模块的函数返回矩阵而不是返回ndarray对象。 matlib.empty() matlib.empty()函数返回一个新的矩阵,而不初始化元素。 该函数接受以下参数。 Python Python 其中: 示例
阅读全文
摘要:NumPy - 副本和视图 在执行函数时,其中一些返回输入数组的副本,而另一些返回视图。 当内容物理存储在另一个位置时,称为副本。 另一方面,如果提供了相同内存内容的不同视图,我们将其称为视图。 无复制 简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回
阅读全文