04 2022 档案

摘要:在zotero上下载Bibtex扩展。 在vscode 上快捷键 ctrl+alt+r 或者 zotero中control+shift+c 在zotero 上选择file,导出library,并且选择keep update,这样在之后添加文献的时候会自动更新bib文件1。 如果遇到bib存储路径中有 阅读全文
posted @ 2022-04-27 21:39 narip 阅读(302) 评论(0) 推荐(0)
摘要:Notation1 We use the convention that \(\Omega(x)\) means a function that is asymptotically \(\geq c_{1} x\) for a constant \(c_{1}>0, O(x)\) means \(\ 阅读全文
posted @ 2022-04-22 22:04 narip 阅读(21) 评论(0) 推荐(0)
摘要:Theorem Any n qubtis state can be represented by combination of product of pauli matrix of 2 qubtis, that is \(\{I,X,Y,Z\}^{\otimes n}\). Further, any 阅读全文
posted @ 2022-04-22 22:03 narip 阅读(41) 评论(0) 推荐(0)
摘要:In Nielsen and Chuang's QCQI, there are three kinds of measurement: general measurement, projective measurement, positive operator valued measurement( 阅读全文
posted @ 2022-04-22 22:02 narip 阅读(55) 评论(0) 推荐(0)
摘要:Quasi Probability method clear all; clc; theta = pi/4; p = 0.3; % initial state psi = 1/sqrt(2)*[1;exp(1j*theta)]; rho = psi*psi'; sx = [0 1;1 0]; sy 阅读全文
posted @ 2022-04-22 22:02 narip 阅读(60) 评论(0) 推荐(0)
摘要:Mainly about Choi-Jamiolkowski isomorphism. It means that any quantum channel can found a correspoding matrix with it. Their connection is 1 to 1 and 阅读全文
posted @ 2022-04-21 21:48 narip 阅读(556) 评论(0) 推荐(0)
摘要:$|1 − e^{i\theta}| ≥ 2|\theta|/\pi$ whenever $−\pi ≤ \theta ≤ \pi$ $-log x\ge (1-x)/ln2$ where $log$ has base $2$. $\left(\begin{array}{cccc} \Pi_{1} 阅读全文
posted @ 2022-04-18 18:55 narip 阅读(230) 评论(0) 推荐(0)
摘要:#Beamer Page number \setbeamertemplate{footline}[frame number] links 1 Formula fonts \usefonttheme[onlymath]{serif} links 1 Hide numbers of some slide 阅读全文
posted @ 2022-04-16 13:47 narip 阅读(95) 评论(0) 推荐(0)
摘要:怎样用Mathematica解带字母的方程组? Clear Variable. Clear["Global`*"]; Variable is positive real with assumptions. ref $Assumptions = Element[Subscript[\[Theta], 阅读全文
posted @ 2022-04-14 09:16 narip 阅读(37) 评论(0) 推荐(0)
摘要:添加快捷键 阅读全文
posted @ 2022-04-11 13:47 narip 阅读(22) 评论(0) 推荐(0)
摘要:Useful linkes: https://www.rampfesthudson.com/does-law-of-large-numbers-imply-central-limit-theorem/ https://en.wikipedia.org/wiki/Central_limit_theor 阅读全文
posted @ 2022-04-08 10:43 narip 阅读(17) 评论(0) 推荐(0)
摘要:\[ we\,\,want\,\,to\,\,prove\,\,that \\ ad\left( ab \right) -ad\left( ba \right) =ad\left( a \right) ad\left( b \right) -ad\left( b \right) ad\left( a 阅读全文
posted @ 2022-04-03 21:09 narip 阅读(29) 评论(0) 推荐(0)