03 2022 档案
摘要:Quantum Fourier Transform: $$\sum_{j=0}{N-1}{x_j|j\rangle}\Rightarrow \sum_{j=0}{N-1}{x_j\frac{1}{\sqrt{N}}\sum_{k=0}{N-1}{e{2\pi i\frac{jk}{N}}|k\ran
阅读全文
摘要:If we use sample mean: \(\frac{\sum_i{\left( X_i-\bar{X} \right)}^2}{n}\), then we should use sample variance:\(\frac{\sum_i{\left( X_i-\bar{X} \right
阅读全文
摘要:Refer links
阅读全文
摘要:从Pauli算符看SU(2)与SO(3) 如果$U\in SU\left( 2 \right) $,对于任意一个$2x2$零迹厄密矩阵$\sigma=\left( \begin{matrix} z& x-iy\ x+iy& -z\ \end{matrix} \right)$,都有$U\sigma U
阅读全文
摘要:Most easy reading material!!! 转载
阅读全文
摘要:实现简单的VQE。 导入包。 from random import random import numpy as np import qiskit from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, e
阅读全文
摘要:Hamiltonian in the interaction picture $$ i\partial |\psi \rangle =H|\psi \rangle ,e^{iH_0t}|\psi \rangle =|\phi \rangle \ i\partial \left( e^{-iH_0t}
阅读全文
摘要:Suppose \(p(x)\) is a polynomial of degree \(\leq n\) which is bounded in \([-1,+1]\) for \(x \in[-1,+1]\). What is the largest \(p^{\prime}(0)\) can
阅读全文