内核驱动系列--字符设备驱动流程

内核模块基础:

1 可以通过编译进内核和动态加载内核模块来将驱动模块加载,调试过程中后者比较常用。

2 相关命令: insmod rmmod modinfo lsmod dmesg modinfo cat /proc/devices cat /proc/moduls

3 内核模块程序结构:

  1 模块加载函数 --- module_init (initial_function) 其中initial_functon 常用__init修饰

  2 模块卸载函数 --- module_exit (cleanup_function) 其中cleanup_functon 常用__exit修饰

  3 模块许可声明 (必须) --- MODULE_LICENSE ("DUAL BSD/GPL");

  4 模块参数(可选)--- module_param

  5 模块导出符号 (可选)--- EXPORT_SYMBOL (add_interger);

  6 模块作者等信息声明(可选)--- MODULE_AUTHOR MODULE_DEVICE_TABLE 等

4 内核模块的编译,简单示例如

##一定要注意内核版本与交叉编译工具链相一致,此处的内核目录是目标板的源码目录
obj-m += hello-ioctl.o
##多文件时加一句 modulename-objs := file1.o file2.o
ARCH ?= arm
CROSS_COMPILE ?= arm-linux-
KERNELDIR := /source/kernel/linux-2.6.35
all:
    make -C $(KERNELDIR) M=$(PWD) modules
clean:
    make -C $(KERNELDIR) M=$(PWD) clean

字符设备驱动:

一个字符设备驱动主要由驱动加载与卸载函数 和 file_operations结构体中成员函数组成。

加载模块中主要完成设备号的申请和cdev的注册,而在卸载函数中英实现设备号与cdev的注销。

file_operations结构体成员函数是字符设备驱动与内核的接口,大多数字符设备驱动都会实现

read(), write()和ioctl()函数。

下面使用一个虚拟的globalmem设备来说明字符设备驱动的编写过程:

#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/slab.h>//for kfree
#include <linux/kernel.h>

#define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 250
#define GLOBALMEM_MAGIC 'j' //for the command of ioctl
#define MEM_CLEAN_IO (GLOBALMEM_MAGIC, 0)

static int globalmem_major = GLOBALMEM_MAJOR;
struct globalmem_dev {
	struct cdev cdev;
	unsigned char mem[GLOBALMEM_SIZE];
};
struct  globalmem_dev *globalmem_devp;
//use the private_data for more than one device
int globalmem_open (struct inode *inode, struct file *filp)
{
	struct globalmem_dev *dev;
	dev = container_of (inode->i_cdev, struct globalmem_dev, cdev);
	filp->private_data = dev;
	return 0;
}
int globalmem_release (struct inode *inode, struct file *filp)
{
	return 0;
}
static ssize_t globalmem_read (struct file *filp, char __user *buf,
		size_t size, loff_t *ppos)
{
	unsigned long p = *ppos;
	unsigned int count = size;
	int ret = 0;
	struct globalmem_dev *dev = filp->private_data;
	if (p >= GLOBALMEM_SIZE)
		return 0;
	if (count > GLOBALMEM_SIZE - p)
		count = GLOBALMEM_SIZE - p;
	if (copy_to_user (buf, (void *) (dev->mem + p), count))
		ret = -EFAULT;
	else {
		*ppos += count;
		ret = count;
		printk (KERN_INFO "read %d bytes(s) from %ld\n", count, p);
	}

	return ret;
}
static ssize_t globalmem_write (struct file *filp, const char __user *buf,
		size_t size, loff_t *ppos)
{
	unsigned long p = *ppos;
	size_t count = size;
	int ret = 0;
	struct globalmem_dev *dev = filp->private_data;

	if (p >= GLOBALMEM_SIZE)
		return 0;
	if (count > GLOBALMEM_SIZE-p)
		count = GLOBALMEM_SIZE - p;
	if (copy_from_user (dev->mem+p, buf, count))
		ret = -EFAULT;
	else {
		*ppos += count;
		ret = count;
		printk (KERN_INFO "written %d bytes from %ld\n", count, p);
	}
	return ret;
}
static loff_t globalmem_llseek (struct file *filp, loff_t offset, int orig)
{
	loff_t ret;
	switch (orig) {
		case 0:
			if (offset < 0) {
				ret = -EINVAL;
				break;
			}
			if ((unsigned int)offset > GLOBALMEM_SIZE) {
				ret = -EINVAL;
				break;
			}
			filp->f_pos = (unsigned int) offset;
			ret = filp->f_pos;
			break;
		case 1:
			if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
				ret = -EINVAL;
				break;
			}
			if ((filp->f_pos + offset) < 0) {
				ret = -EINVAL;
				break;
			}
			filp->f_pos += offset;
			ret = filp->f_pos;
			break;
		default:
			ret = -EINVAL;
	}
	return ret;
}

static int globalmem_ioctl (struct inode *inodep, struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct globalmem_dev *dev = filp->private_data;
	switch (cmd) {
		case MEM_CLEAR:
			memset (dev->mem, 0, GLOBALMEM_SIZE);
			printk (KERN_INFO "globalmem is set to zero\n");
			break;
		default:
			return -EINVAL;
	}
	return 0;
}

static const struct file_operations globalmem_fops = {
	.owner = THIS_MODULE,
	.llseek = globalmem_llseek,
	.read = globalmem_read,
	.write = globalmem_write,
	.ioctl = globalmem_ioctl,
	.open = globalmem_open,
	.release = globalmem_release,
};
static void globalmem_setup_cdev (struct globalmem_dev *dev, int index)
{
	int err;
	int devno = MKDEV (globalmem_major, 0);

	cdev_init (&dev->cdev, &globalmem_fops);
	dev->cdev.owner = THIS_MODULE;
	err = cdev_add (&dev->cdev, devno, 1);
	if (err)
		printk (KERN_NOTICE "Error %d adding globalmem", err);
}
int globalmem_init (void)
{
	int result;
	dev_t devno = MKDEV (globalmem_major, 0);
	if (globalmem_major)
		result = register_chrdev_region (devno, 2, "globalmem");
	else {
		result = alloc_chrdev_region (&devno, 0, 2, "globalmem");
		globalmem_major = MAJOR (devno);
	}
	if (result < 0)
		return result;
	globalmem_devp = kmalloc (2 * sizeof (struct globalmem_dev),
			GFP_KERNEL);
	if (!globalmem_devp) {
		result = -ENOMEM;
		goto fail_malloc; //use goto for exception handling
	}
	memset (globalmem_devp, 0, 2 * sizeof (struct globalmem_dev));
	globalmem_setup_cdev (&globalmem_devp[0], 0);
	globalmem_setup_cdev (&globalmem_devp[1], 1);
	return 0;

fail_malloc: unregister_chrdev_region (devno, 1);
return result;
}

void globalmem_exit (void)
{
	cdev_del (&(globalmem_devp[0].cdev));
	cdev_del (&(globalmem_devp[1].cdev));
	kfree (globalmem_devp);
	unregister_chrdev_region (MKDEV (globalmem_major, 0), 2);
}

MODULE_AUTHOR ("ljia");
MODULE_LICENSE ("Dual BSD/GPL");
module_param (globalmem_major, int, S_IRUGO);
module_init (globalmem_init);
module_exit (globalmem_exit);

  

posted @ 2011-10-18 15:52  jialejiahi  阅读(949)  评论(0编辑  收藏  举报