04 2017 档案
摘要:(3)上两篇介绍了关于欧几里德分割,条件分割,最小分割法等等还有之前就有用RANSAC法的分割方法,这一篇是关于区域生成的分割法, 区 域生长的基本 思想是: 将具有相似性的像素集合起来构成区域。首先对每个需要分割的区域找出一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子有相同或相似性质的
阅读全文
摘要:(2)关于上一篇博文中提到的欧几里德分割法称之为标准的距离分离,当然接下来介绍其他的与之相关的延伸出来的聚类的方法,我称之为条件欧几里德聚类法,(是我的个人理解),这个条件的设置是可以由我们自定义的,因为除了距离检查,聚类的点还需要满足一个特殊的自定义的要求,就是以第一个点为标准作为种子点,候选其周
阅读全文
摘要:基于欧式距离的分割和基于区域生长的分割本质上都是用区分邻里关系远近来完成的。由于点云数据提供了更高维度的数据,故有很多信息可以提取获得。欧几里得算法使用邻居之间距离作为判定标准,而区域生长算法则利用了法线,曲率,颜色等信息来判断点云是否应该聚成一类。 (1)欧几里德算法 具体的实现方法大致是: 因为
阅读全文
摘要:记录关于我们运行roslaunch openni_launch openni.launch 命令时生成的话题以及这些话题的数据类型便于后期的处理,只有知道它们的数据结构,才能很好的对数据进行处理,我们观察到使用rostopic list的所有话题的列表,当然其中也有一些不经常使用的话题类型,比如下面
阅读全文
摘要:超体聚类是一种图像的分割方法。 超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与大部分的分割手段不同,超体聚 类的目的并不是分割出某种特定物体,超体是对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每
阅读全文
摘要:来自微信公众号的分享 我刚刚开始接触PCL,懂的东西也很少,所以总是出现各种各样的问题,每次遇见问题的时候要查找各种各样的资料,很费时间。所以,今天我把我遇见的常见问题分享给大家,讲解的步骤尽量详细,让和我一样基础差的小伙伴能尽快进入到PCL点云库的学习中,希望能和大家进步。 运行环境:PCL-1.
阅读全文
摘要:image_encodings.cpp文件是关于图像编码模式的源文件,其中规定了RGB的图像以及深度图的编码模式 该编码文件image_encodings.cpp所依赖的头文件图 命令空间 sensor_msgs::image_encodings 下的函数 Functions Variables 最
阅读全文
摘要:关于输入一个具体的物体的点云,从场景中找出与该物体点云相匹配的,这种方法可以用来抓取指定的物体等等,具体的代码的解释如下,需要用到的一些基础的知识,在之前的博客中都有提及,其中用到的一些方法可以翻阅前面的博客,当然有问题可以关注公众号,与众多爱好者一起交流 具体的代码实现 可视化特征角点 使用Hou
阅读全文
摘要:(1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别 区别: 那么要实现它们之间的数据转换, 举个例子 程序中红色部分就是一句实现两者之间的数据转化的我们可以看出 那么依照这种的命名风格我们可以查看到更多的关于的
阅读全文
摘要:在ROS中点云的数据类型 在ROS中表示点云的数据结构有: sensor_msgs::PointCloud sensor_msgs::PointCloud2 pcl::PointCloud<T> 关于PCL在ros的数据的结构,具体的介绍可查 看 wiki.ros.org/pcl/Overview
阅读全文

浙公网安备 33010602011771号