02 2017 档案
摘要:目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术 ,深度图像的边缘检测技术 ,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,
阅读全文
摘要:(1)点云到深度图与可视化的实现 区分点云与深度图本质的区别 1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。 2.点云:当一束激光照射到物体表面时,所反射的激光会携带方
阅读全文
摘要:关键点也称为兴趣点,它是2D图像或是3D点云或者曲面模型上,可以通过定义检测标准来获取的具有稳定性,区别性的点集,从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等
阅读全文
摘要:在计算机视觉领域广泛的使用各种不同的采样一致性参数估计算法用于排除错误的样本,样本不同对应的应用不同,例如剔除错误的配准点对,分割出处在模型上的点集,PCL中以随机采样一致性算法(RANSAC)为核心,同时实现了五种类似与随机采样一致形算法的随机参数估计算法,例如随机采样一致性算法(RANSAC)最
阅读全文
摘要:(1)从一个点云中提取索引 如何使用一个,基于某一分割算法提取点云中的一个子集。 代码解析 结果: 显示出来: 图1 原始点云图像 图2 下采样后点云数据 图3 分割得到的其一平面模型 图4 分割得到的其二平面模型 (2)使用ConditionalRemoval 或RadiusOutlinerRem
阅读全文
摘要:(1)使用statisticalOutlierRemoval滤波器移除离群点 使用统计分析技术,从一个点云数据中集中移除测量噪声点(也就是离群点)比如:激光扫描通常会产生密度不均匀的点云数据集,另外测量中的误差也会产生稀疏的离群点,使效果不好,估计局部点云特征(例如采样点处法向量或曲率变化率)的运算
阅读全文
摘要:在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射特性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处
阅读全文
摘要:在3D视窗中以点云形式进行可视化(深度图像来自于点云),另一种是将深度值映射为颜色,从而以彩色图像方式可视化深度图像, 新建工程ch4_2,新建文件range_image_visualization.cpp,填充内容如下 编译结束运行可执行文件的结果为: 运行 ./range_image_visua
阅读全文
摘要:PCLVisualizer可视化类是PCL中功能最全的可视化类,与CloudViewer可视化类相比,PCLVisualizer使用起来更为复杂,但该类具有更全面的功能,如显示法线、绘制多种形状和多个视口。本小节将通过示例代码演示PCLVisualizer可视化类的功能,从显示单个点云开始。大多数示
阅读全文
摘要:(1) octree是一种用于管理稀疏3D数据的树形数据结构,每个内部节点都正好有八个子节点,介绍如何用octree在点云数据中进行空间划分及近邻搜索,实现“体素内近邻搜索(Neighbors within VOxel Search)”,"K近邻搜索(K Nearest Neighbor Searc
阅读全文
摘要:可视化(visualization)是利用计算机图形学和图像处理技术,将数据转换图像在屏幕上显示出来,并进行交互处理的的理论,方法和技术, pcl_visualization库建立了能够快速建立原型的目的和可视化算法对三维点云数据操作的结果。类似于opencv的highgui例程显示二维图像,在屏幕
阅读全文
摘要:建立空间索引在点云数据处理中有着广泛的应用,常见的空间索引一般 是自顶而下逐级划分空间的各种空间索引结构,比较有代表性的包括BSP树,KD树,KDB树,R树,四叉树,八叉树等索引结构,而这些结构中,KD树和八叉树使用比较广泛 八叉树(Octree)是一种用于描述三维空间的树状数据结构。八叉树的每个节
阅读全文
摘要:(小技巧记录:博客园编辑的网页界面变小了使用Ctrl ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核
阅读全文
摘要:(1)学习如何连接两个不同点云为一个点云,进行操作前要确保两个数据集中字段的类型相同和维度相等,同时了解如何连接两个不同点云的字段(例如颜色 法线)这种操作的强制约束条件是两个数据集中点的数目必须一样,例如:点云A是N个点XYZ点,点云B是N个点的RGB点,则连接两个字段形成点云C是N个点xyzrg
阅读全文
摘要:(1)学习向PCD文件写入点云数据 建立工程文件ch2,然后新建write_pcd.cpp CMakeLists.txt两个文件 write_pcd.cpp : CMakeLists.txt:(第一次接触CMake所以注释的比较多,废话比较多,所以有助于理解) 之后就 cd 到文件下 mkdir b
阅读全文
摘要:I/O模块中共有21个类 (1)class pcl::FIleReader:定义了PCD文件的读取接口,主要用作其他读取类的父类 pcl::FileReader有pcl::PCDReader和pcl::PLYReader子类 (2)class pcl::FIleWrite : 与class pcl:
阅读全文
摘要:PCL中可用的PointT类型: PointXYZ——成员变量:float x,y,z; PointXYZ是使用最常见的一个点数据类型,因为他之包含三维XYZ坐标信息,这三个浮点数附加一个浮点数来满足存储对齐,可以通过points[i].data[0]或points[i].x访问点X的坐标值 Poi
阅读全文
摘要:PCL(PointCloudLibrary)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、An
阅读全文
摘要:将博客搬家至http://blog.csdn.net/u013019296
阅读全文

浙公网安备 33010602011771号