python开发面向对象进阶:反射&内置函数

isinstance和issubclass

isinstance(obj,cls)检查是否obj是否是类 cls 的对象或者子类的对象

class Foo(object):
   pass
class bar(Foo):
  pass obj = Foo() sinstance(obj, Foo) == True

issubclass(sub, super)检查sub类是否是 super 类的派生类 

class Foo(object):
    pass
 
class Bar(Foo):
    pass
 
issubclass(Bar, Foo)

 

反射

1 什么是反射

反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力(自省)。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在Lisp和面向对象方面取得了成绩。

 

2 python面向对象中的反射:通过字符串的形式操作对象相关的属性。python中的一切事物都是对象(都可以使用反射)

四个可以实现自省的函数

下列方法适用于类和对象(一切皆对象,类本身也是一个对象)

def hasattr(*args, **kwargs): # real signature unknown
    """
    Return whether the object has an attribute with the given name.
    
    This is done by calling getattr(obj, name) and catching AttributeError.
    """
    pass
hasattr
def getattr(object, name, default=None): # known special case of getattr
    """
    getattr(object, name[, default]) -> value
    
    Get a named attribute from an object; getattr(x, 'y') is equivalent to x.y.
    When a default argument is given, it is returned when the attribute doesn't
    exist; without it, an exception is raised in that case.
    """
    pass
getattr
def setattr(x, y, v): # real signature unknown; restored from __doc__
    """
    Sets the named attribute on the given object to the specified value.
    
    setattr(x, 'y', v) is equivalent to ``x.y = v''
    """
    pass
setattr
def delattr(x, y): # real signature unknown; restored from __doc__
    """
    Deletes the named attribute from the given object.
    
    delattr(x, 'y') is equivalent to ``del x.y''
    """
    pass
delattr
class Foo:
    f = '类的静态变量'
    def __init__(self,name,age):
        self.name=name
        self.age=age

    def say_hi(self):
        print('hi,%s'%self.name)

obj=Foo('egon',73)

#检测是否含有某属性
print(hasattr(obj,'name'))
print(hasattr(obj,'say_hi'))

#获取属性
n=getattr(obj,'name')
print(n)
func=getattr(obj,'say_hi')
func()

print(getattr(obj,'aaaaaaaa','不存在啊')) #报错

#设置属性
setattr(obj,'sb',True)
setattr(obj,'show_name',lambda self:self.name+'sb')
print(obj.__dict__)
print(obj.show_name(obj))

#删除属性
delattr(obj,'age')
delattr(obj,'show_name')
delattr(obj,'show_name111')#不存在,则报错

print(obj.__dict__)
四个方法的使用演示

 

class Foo(object):
 
    staticField = "old boy"
 
    def __init__(self):
        self.name = 'wupeiqi'
 
    def func(self):
        return 'func'
 
    @staticmethod
    def bar():
        return 'bar'
 
print getattr(Foo, 'staticField')
print getattr(Foo, 'func')
print getattr(Foo, 'bar')
类也是对象

 

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import sys


def s1():
    print 's1'


def s2():
    print 's2'


this_module = sys.modules[__name__]

hasattr(this_module, 's1')
getattr(this_module, 's2')
反射当前模块成员

导入其他模块,利用反射查找该模块是否存在某个方法

#!/usr/bin/env python
# -*- coding:utf-8 -*-

def test():
    print('from the test')
View Code
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
"""
程序目录:
    module_test.py
    index.py
 
当前文件:
    index.py
"""

import module_test as obj

#obj.test()

print(hasattr(obj,'test'))

getattr(obj,'test')()
View Code

 

__str__和__repr__

改变对象的字符串显示__str__,__repr__

自定制格式化字符串__format__

#_*_coding:utf-8_*_

format_dict={
    'nat':'{obj.name}-{obj.addr}-{obj.type}',#学校名-学校地址-学校类型
    'tna':'{obj.type}:{obj.name}:{obj.addr}',#学校类型:学校名:学校地址
    'tan':'{obj.type}/{obj.addr}/{obj.name}',#学校类型/学校地址/学校名
}
class School:
    def __init__(self,name,addr,type):
        self.name=name
        self.addr=addr
        self.type=type

    def __repr__(self):
        return 'School(%s,%s)' %(self.name,self.addr)
    def __str__(self):
        return '(%s,%s)' %(self.name,self.addr)

    def __format__(self, format_spec):
        # if format_spec
        if not format_spec or format_spec not in format_dict:
            format_spec='nat'
        fmt=format_dict[format_spec]
        return fmt.format(obj=self)

s1=School('oldboy1','北京','私立')
print('from repr: ',repr(s1))
print('from str: ',str(s1))
print(s1)

'''
str函数或者print函数--->obj.__str__()
repr或者交互式解释器--->obj.__repr__()
如果__str__没有被定义,那么就会使用__repr__来代替输出
注意:这俩方法的返回值必须是字符串,否则抛出异常
'''
print(format(s1,'nat'))
print(format(s1,'tna'))
print(format(s1,'tan'))
print(format(s1,'asfdasdffd'))
View Code
class B:

     def __str__(self):
         return 'str : class B'

     def __repr__(self):
         return 'repr : class B'


b=B()
print('%s'%b)
print('%r'%b)
%s和%r

 

__del__

析构方法,当对象在内存中被释放时,自动触发执行。

注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。

class Foo:

    def __del__(self):
        print('执行我啦')

f1=Foo()
del f1
print('------->')

#输出结果
执行我啦
------->
简单示范

 

item系列

__getitem__\__setitem__\__delitem__

class Foo:
    def __init__(self,name):
        self.name=name

    def __getitem__(self, item):
        print(self.__dict__[item])

    def __setitem__(self, key, value):
        self.__dict__[key]=value
    def __delitem__(self, key):
        print('del obj[key]时,我执行')
        self.__dict__.pop(key)
    def __delattr__(self, item):
        print('del obj.key时,我执行')
        self.__dict__.pop(item)

f1=Foo('sb')
f1['age']=18
f1['age1']=19
del f1.age1
del f1['age']
f1['name']='alex'
print(f1.__dict__)
View Code
 

__new__

class A:
    def __init__(self):
        self.x = 1
        print('in init function')
    def __new__(cls, *args, **kwargs):
        print('in new function')
        return object.__new__(A, *args, **kwargs)

a = A()
b = A()
print(id(a),id(b))  # 不一样的值,每一个对象都是独立的
View Code
class Singleton:
    def __new__(cls, *args, **kw):                            # __new__方法,创建对象
        if not hasattr(cls, '_instance'):                     # 如果这个对象Singleton没有_instance属性
            cls._instance = object.__new__(cls, *args, **kw)  # 给这个Singleton创建一个_instance变量,并且把这个新对象赋予给这个变量
        return cls._instance                                  # 有_instance属性,就返回这个对象

one = Singleton()
two = Singleton()  # 第二次的时候,_instance有这个属性了,返回了这个对象

two.a = 3
print(one.a)
# 3
# one和two完全相同,可以用id(), ==, is检测
print(id(one))
# 29097904
print(id(two))
# 29097904
print(one == two)
# True
print(one is two)
单例模式

 

__call__

对象后面加括号,触发执行。

注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

class Foo:

    def __init__(self):
        pass
    
    def __call__(self, *args, **kwargs):

        print('__call__')


obj = Foo() # 执行 __init__
obj()       # 执行 __call__
View Code

 

__len__

class A:
    def __init__(self):
        self.a = 1
        self.b = 2

    def __len__(self):
        return len(self.__dict__)
a = A()
print(len(a))
View Code

 

__hash__

class A:
    def __init__(self):
        self.a = 1
        self.b = 2

    def __hash__(self):
        return hash(str(self.a)+str(self.b))
a = A()
print(hash(a))
View Code

 

__eq__

class A:
    def __init__(self):
        self.a = 1
        self.b = 2

    def __eq__(self,obj):
        if  self.a == obj.a and self.b == obj.b:
            return True
a = A()
b = A()
print(a == b)
View Code

 

from collections import namedtuple
Card = namedtuple('Card',['rank','suit'])

class FranchDeck:
    ranks = [str(n) for n in range(2,11)] + list('JQKA')
    suits = ['红心','方板','梅花','黑桃']

    def __init__(self):
        self._cards = [Card(rank,suit) for rank in FranchDeck.ranks for suit in FranchDeck.suits]

    def __len__(self):                  # 实现洗牌,拿牌
        return len(self._cards)

    def __getitem__(self, item):        # 实现拿牌
        return self._cards[item]

    def __setitem__(self, key, value):  # 实现洗牌
        self._cards[key] = value

    def __call__(self, *args, **kwargs):
        return self._cards

deck = FranchDeck()
print(deck)         # 类对象
print(deck._cards)  # 得到52张牌  [Card(rank='2', suit='红心'), Card(rank='2', suit='方板'), Card(rank='2', suit='梅花'), Card(rank='2', suit='黑桃')....]
print(len(deck))    # 52
print(deck[0])      # 取第一张牌,有序拿牌

from random import choice # CHIOCE 依赖于__len__  __getitem__    len给索引,getitem取值
print(choice(deck))
print(choice(deck))

from random import shuffle    # 洗牌 __len__ __setitem__
shuffle(deck)
print(deck[0])

print(deck[0])      # __call__ 已经乱序
纸牌游戏
class Person:
    def __init__(self,name,age,sex):
        self.name = name
        self.age = age
        self.sex = sex

    def __hash__(self):
        return hash(self.name+self.sex)

    def __eq__(self, other):
        if self.name == other.name and self.sex == self.sex:return True


p_lst = []
for i in range(84):
    p_lst.append(Person('egon',i,'male'))

print(p_lst)
print(set(p_lst))
# 如果名字和性别相同,我们判定他们是同一个人
一道面试题

 

posted @ 2017-08-24 17:19  liqianlong  阅读(261)  评论(0编辑  收藏  举报