摘要:
什么是PCA?PCA是Principal component analysis的缩写,中文翻译为主元分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。... 阅读全文
posted @ 2010-11-15 15:30
echobs
阅读(1332)
评论(0)
推荐(0)
摘要:
下面我就对PCA做一个简单的介绍吧: PCA是主成分分析,主要用于数据降维,对于一系列sample的feature组成的多维向量,多维向量里的某些元素本身没有区分性,比如某个元素在所有的sample中都为1,或者与1差距不大,那么这个元素本身就没有区分性,用它做特征来区分,贡献会非常小。所以我们的目的是找那些变化大的元素,即方差大的那些维,而去除掉那些变化不大的维,从而使feature留下的都是&... 阅读全文
posted @ 2010-11-15 14:42
echobs
阅读(319)
评论(0)
推荐(0)

浙公网安备 33010602011771号