12 2021 档案
摘要:题意 :设 \(S\) 是第二类斯特林数, 求 \(\sum\limits_{i=0}^{n}\sum\limits_{j=0}^{i}S(i,j) \times 2^j \times j!\) 因为有 \(m^n =\sum\limits_{i=0}^{m}\dbinom m i i! \time
阅读全文
摘要:城市规划 设 \(f_i\) 表示 \(i\) 个点的无向图, \(g_i\) 表示 \(i\) 个点的无向连通图, 显然有 \(f_i = 2^{\binom n 2}\) trick : 枚举特定点, 把要计数的东西分成两个部分。 在这里, 枚举1号点的连通块大小, 有 \(f_n = \sum
阅读全文
摘要:我们称 \(B\) 是集合 \(S\) 的线性基, 当且仅当 : \(S \subseteq \operatorname{span}(S)\) . \(B\) 线性无关. 这里不再解释线性相关 / 无关的概念, 有需求的读者可以自行翻阅线性代数。 其中, \(B\) 的元素个数称为线性基的长度。 线
阅读全文
摘要:多项式求逆 已知 \(F(x)\), 求 \(G(x)\), 使得 \(F(x) \times G(x) = 1\)。 做法 : 倍增。 \(G[0]\) 即是 \(F[0]\) 的逆元。 若已知 \(F(x) \times G_0(x) \equiv 1 (\mod x^{\frac n 2 })
阅读全文
摘要:行列式与矩阵树定理 行列式的定义 行列式($\mathrm{Determinant}$) 是一个函数定义, 取值是一个标量。 对于一个 $n \times n$ 的矩阵 $A$, 它的行列式写作 $\mathrm{det}(A)$ 或 $|A|$, 定义为 : $\sum\limits_{p}(-1
阅读全文

浙公网安备 33010602011771号