Sorting It All Out
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 21865 | Accepted: 7529 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
/*
这道题WA了好久,其中有几个需要注意的地方
1、当出现正好存在一种情况能够排序完所有节点时,不管以后的边会出现什么情况,都输出
能够排序成功
2、当中间的拓扑排序过程中出现多个几点的入度为0时,只记录当时的状态
(亦即该测试数据要么出现环,要么就是有多组解),不能立即返回,
要继续读边,直到能够排序完成(此时输出有多解的情况)或者出现环。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
bool G[30][30];
int d[30];
char s[30];
int toposort(int n)
{
int num,k,i,j,t;
int td[30];
bool flag=true;
for(i=1;i<=n;++i)
td[i]=d[i];
memset(s,0,sizeof(0));
for(j=0;j<n;++j)
{
num=0;
for(i=1;i<=n;++i)
{
if(td[i]==0)
{
k=i;
++num;
}
}
if(num==0) //有环
return -1;
if(num>1) //有多种情况,还需继续读边判断
{
flag=false;
}
s[j]='A'+k-1;
td[k]=-1;
for(t=1;t<=n;++t)
{
if(G[k][t])
--td[t];
}
}
s[n]='\0';
if(flag==false) //情况不唯一
return 0;
return 1; //全部排好序了返回1.
}
int main()
{
int n,m,i,ans,k;
bool flag;
char temp[5];
while(scanf("%d%d",&n,&m),m||n)
{
memset(G,false,sizeof(G));
memset(d,0,sizeof(d));
flag=true;
for(i=1;i<=m;++i)
{
scanf("%s",temp);
if(!flag) //已经排好序或者有环
continue;
int u=temp[0]-'A'+1;
int v=temp[2]-'A'+1;
if(!G[u][v])
{
++d[v];
G[u][v]=true;
}
ans=toposort(n);
if(ans==1||ans==-1)
{
k=i;
flag=false;
}
}
if(ans==1)
{
printf("Sorted sequence determined after %d relations: %s.\n",k,s);
}
else if(ans==-1)
{
printf("Inconsistency found after %d relations.\n", k);
}
if(flag&&i>m)
printf("Sorted sequence cannot be determined.\n");
}
return 0;
}
功不成,身已退
浙公网安备 33010602011771号