摘要: 大型语言模型 (LLM) 在文本生成领域展现出卓越的能力,然而当需要 引用上下文内容 以支撑其生成内容时,现有方法仍面临挑战。 传统方法在引导 LLM 准确、可靠地对上下文内容进行引用时,容易产生 幻觉,即生成与上下文不符或缺乏上下文依据的引用,从而降低了生成回复的可信度和实用性。 为了解决这一关键 阅读全文
posted @ 2025-02-25 10:53 deephub 阅读(12) 评论(0) 推荐(0)