会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年5月19日
DeepSparse: 通过剪枝和稀疏预训练,在不损失精度的情况下减少70%的模型大小,提升三倍速度
摘要: 这篇论文提出了一种高稀疏性基础大型语言模型(LLMs)的新方法,通过有效的预训练和部署,实现了模型在保持高准确度的同时,显著提升了处理速度。 https://avoid.overfit.cn/post/06961c02a12b48a6a3e1436b527fd2b7
阅读全文
posted @ 2024-05-19 09:49 deephub
阅读(62)
评论(0)
推荐(0)
公告