摘要: 1)Deep Learning相比于传统方法的优势 首先,一个很直观的图,随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高,后来这个在提问环节也有同学问道,是否会一直提高,Andrew Ng也坦诚需要面对不同的问题来讨论,而且任何方法都有天花板。 阅读全文
posted @ 2015-04-21 23:11 张旭龙 阅读(180) 评论(0) 推荐(0)
摘要: Andrew ng清华报告听后感 (2013-03-26 23:05:40) 转载▼ Andrew ng今天来清华作报告,我就几点重要的内容,谈谈理解和想法。 阅读全文
posted @ 2015-04-21 23:05 张旭龙 阅读(208) 评论(0) 推荐(0)
摘要: 「深度神经网络」(deep neural network)具体是怎样工作的? 阅读全文
posted @ 2015-04-21 22:45 张旭龙 阅读(141) 评论(0) 推荐(0)
摘要: 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training。本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by Andrew Ng做出导论性讲解。 关键词:unsupervised learning,feature extraction,feature learning,Sparse Coding,Sparse DBN,Sparse Matrix,Computer Vision,Audio Classification,NLP 阅读全文
posted @ 2015-04-21 22:42 张旭龙 阅读(180) 评论(0) 推荐(0)
摘要: 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training。本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by Andrew Ng做出导论性讲解。 关键词:unsupervised learning,feature extraction,feature learning,Sparse Coding,Sparse DBN,Sparse Matrix,Computer Vision,Audio Classification,NLP 阅读全文
posted @ 2015-04-21 14:58 张旭龙 阅读(176) 评论(0) 推荐(0)
摘要: Preliminary stuff that can be useful, depending on your background About neural networks About distributed representations About learning distributed representations for words About auto-encoders Learning about relations between symbols About Monte-Carlo methods About graphical models About Boltzmann machines and related energy-based models About Products of Experts, Restricted Boltzmann Machines and Contrastive Divergence About deep belief networks as such Early version: wake-sleep a 阅读全文
posted @ 2015-04-21 14:52 张旭龙 阅读(353) 评论(0) 推荐(0)
摘要: Welcome to the Public web of LISA NEW: Presentation at from Yoshua Bengio. Available from videoletures.com This website serves as an introduction to our research projects, ideas, papers and datasets that we make available to the public. It is a complement to our publications, availablethere. 阅读全文
posted @ 2015-04-21 14:50 张旭龙 阅读(132) 评论(0) 推荐(0)
摘要: ICML 2009 Workshop on Learning Feature Hierarchies June 18, 2009 in Montreal, Canada REFERENCES In the following, we first list some papers published since 2008, to reflect the new research activities since the last deep learning workshop held at NIPS, Dec 2007, and then list some earlier papers as well. 阅读全文
posted @ 2015-04-21 14:49 张旭龙 阅读(221) 评论(0) 推荐(0)
摘要: index next | previous | Notes de cours IFT6266 Hiver 2010 » Table Of Contents Introduction to Deep Learning Algorithms Depth Motivations for Deep Architectures Insufficient depth can hurt The brain has a deep architecture Cognitive processes seem deep Breakthrough in Learning Deep Architectures Introduction to Deep Learning Algorithms See the following article for a recent survey of deep learning: Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends i 阅读全文
posted @ 2015-04-21 14:43 张旭龙 阅读(177) 评论(0) 推荐(0)