摘要:$$\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}$$ $\Large\mathbf{Solution:}$ Let $S$ denote the sum. Then $$\begin{align } S=\sum_{n=1
阅读全文
posted @ 2016-05-12 16:24
Renascence_5
阅读(430)
推荐(0)
编辑
摘要:$$\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}$$ where $\widetilde{H_n}$ is the alternating harmonic number. $\Large\mathbf{S
阅读全文
posted @ 2016-05-12 16:09
Renascence_5
阅读(418)
推荐(0)
编辑
摘要:$$\sum_{n = 1}^\infty {\frac{1}{{{n^3}}}} \left( {\sum\limits_{k = 1}^n {\frac{{{{\left( { 1} \right)}^{k 1}}}}{k}} } \right) = \frac{7}{4}\zeta \left
阅读全文
posted @ 2016-05-12 15:40
Renascence_5
阅读(323)
推荐(0)
编辑