随笔分类 - 贪心
摘要:传送门 注意到 $f(X,Y)+f(Y,X)$ 是一个定值(因为每个元素都不相同) 所以如果能让 $f(X,Y)$ 与 $f(Y,X)$ 尽可能接近,那么一定是最优的 所以可以这样构造:把 $n^2$ 的序列每 $n$ 个分成一组,一共 $n$ 组 对于第一个集合,拿出当前第 $1$ 组最大的,第
阅读全文
摘要:传送门 注意到两种操作都要消耗中间的石头,并且两种操作每次都会得到 $3$ 个石头 那么显然优先做操作二是最优的,因为操作二只会消耗中间堆的一个石头 如果有剩下再进行操作 $1$ ,那么可以保证总操作次数最大,即答案最大
阅读全文
摘要:传送门 这一题是真的坑人,时间空间都在鼓励你用 $NTT$ 优化 $dp$...(但是我并不会 $NTT$) 看到题目然后考虑树形 $dp$ ,设 $f[i][0/1]$ 表示 $i$ 个节点的树,根节点为奇数/偶数的方案数 然后发现对于 $f[i][0/1]$ 的所有方案,把节点编号同时加一个偶数
阅读全文
摘要:传送门 首先显然的,如果一个位置开始播放了两圈还没结束,那么就永远不会结束 先考虑位置 $1$ 开始播放,用一个 $multisetset$ 维护一下当前听的所有歌,直到某一首歌 $r$ 不合法了就停止,此时播放的区间即为位置 $1$ 开始的答案 然后考虑从位置 $2$ 开始播放时和从位置 $1$
阅读全文
摘要:传送门 先来考虑一下二维时的情况,那么对于 $x$ 相同的点,我们按 $y$ 排序,然后相邻的一对对消除 最后 $x$ 坐标相同的点最多剩下一个,那么此时所有点的 $x$ 坐标都不一样 再按 $x$ 把 $x$ 相邻的一对对删除即可 扩展到三维,显然也可以同样的思路,先把 $x,y$ 相同的点按 $
阅读全文
摘要:传送门 这一题有点意思 首先预处理出 $pos[x]$ 表示编号 $x$ 的车是第几个出隧道的 然后按进入隧道的顺序枚举每辆车 $x$ 考虑有哪些车比 $x$ 晚进入隧道却比 $x$ 早出隧道 显然是 $1$ 到 $pos[x]$ 中还没访问过的车,那么暴力做法就是这样枚举然后看看有哪些没标记并打上
阅读全文
摘要:传送门 首先对于两个排列 $A,B$ 我们可以把 $A$ 从小到大排序并把 $B$ 重新和 $A$ 一一对应 显然这样不会影响 $\sum_{i=1}^{n}max(A_i,B_i)$ 的值 所以直接把第一个排列固定为 $1,2,3,...,n$ 然后考虑第二个排列 $B$ 怎么排比较好 首先最少的
阅读全文
摘要:传送门 首先减的顺序是无关紧要的,那么有一个显然的贪心 每次减都减最大或者最小的,因为如果不这样操作,最大的差值不会变小 那么直接把序列排序一下然后模拟一下操作过程即可,别一次只减 $1$ 就好
阅读全文
摘要:传送门 最关键的想法就是每个位置一定用的是当前能用的最便宜的水,因为到后面可能有更便宜的 然后其他还没用上的水我们也留着,假装此时已经买了,但是如果发现后面有更优的再反悔也不迟 每相邻两个朋友之间我们把最便宜的一些水消耗了 然后考虑有朋友来送水了 设这个朋友的水的最大体积为 $mx$,价格为 $cs
阅读全文
摘要:传送门 考虑构造一些区间使得树尽可能的 "大" 发现这棵树最多就是一条链加上链上出去的其他边连接的点 构造的区间大概长这样(图比较丑请谅解..$qwq$,图中每一个 "└┘" 都是一段区间): 发现树其实就是个 "毛毛虫":传送门 所以直接求最大的毛毛虫即可 设毛毛虫的主链集合为 $S$ ,那么毛毛
阅读全文
摘要:传送门 求合法的串看一眼很不可做 考虑一下总方案减去不合法方案 考虑如何求不合法的串,首先串中连续的相同字符一定是回文串的一部分 然后考虑 $AB$ 交错的情况,发现对于某个 $A$ 它如果左右都有 $B$ 那么一定也是回文串的一部分 对于 $B$ 也是同理 那么只要考虑一段 $A$ 和一段 $B$
阅读全文
摘要:传送门 题目别看错了,好像挺多人都读错了... 然后显然可以贪心,只有在需要用 $\text{magic crystals}$ 的时候才用 那么直接模拟即可 如果初始相邻两个突出的平台高度不连续那么我们显然可以直接从上面一步步操作到达下面的平台的上面一个位置 此时考虑如果我们直接操作,那么下面那个平
阅读全文
摘要:传送门 首先每个点 $u$ 只能选择不超过 $k$ 个相连的边 并且设边为 $(u,v)$ ,那么此时 $v$ 也必须选择这条边 因为图是一颗树,显然考虑一下树形 $dp$ 设 $f[x][0/1]$ 表示考虑完 $x$ 的子树,当前节点有没有留一个选择给和父亲相连的边($0$ 表示没有) 那么对于
阅读全文
摘要:传送门 分析题目发现如果把某个数 $x$ 往左移,那么之后所有小于 $x$ 的数也都要往左移 如果把 $x$ 往右移,那么之后所有大于 $x$ 的数也都要往右移 考虑我们首先一定有一个操作 $n$ 次的合法方案 但是发现其实有些数可以不用操作,只要把比它小的和比它大的搞成合法就行了 发现其实不用操作
阅读全文
摘要:传送门 显然可以二分答案 如果知道卖的票数,那么就能算出有多少 $a$ 倍数但不是 $b$ 倍数的位置,多少 $b$ 倍数但不是 $a$ 倍数的位置,多少既是 $a$ 又是 $b$ 倍数的位置 然后贪心地把每张票分配给那些位置即可 把价格从大到小排序并预处理前缀和就可以 $O(1)$ 求出最大收益了
阅读全文
摘要:传送门 首先涂区间,那么区间最多有 $2n$ 个相邻位置不同的情况,并且连续相同的颜色可以合并起来 那么这样操作完以后,区间长度最多为 $2n$ 发现涂完一段区间以后其他的操作都不能出现一边在区间内而另一边在区间外的情况 又因为区间长度 $n<=1000$ ,时间 $6$ 秒,考虑一下不满的 $n^
阅读全文
摘要:传送门 首先一定有解,考虑归纳法证明 首先 $n<=3$ 时显然 考虑 $n=4$ 时,那么因为 $s[1]!=s[2],s[3]!=s[4]$ ,并且 $s[i] \in {a,b,c}$ 由鸽巢原理显然意味着 $s[1],s[2]$ 至少有一个等于 $s[3]$ 或 $s[4]$ 那么我们从中间
阅读全文
摘要:传送门 考虑一块块填,首先 $(1,1)$ 有 $4$ 种方案 然后根据 $(1,1)$ 的右边颜色,$(1,2)$ 有两种方案,$(1,3)$ 根据 $(1,2)$ 也有两种方案... 考虑 $(2,1)$ 根据 $(1,1)$ 有两种方案,$(3,1)$ 也有两种.... 然后发现,如果我们确定
阅读全文
摘要:传送门 注意到后手可以模仿先手的操作,那么如果一回合之内没法决定胜负则一定 $\text{once again!}$ 考虑如何判断一回合内能否决定胜负 首先如果最左边和最右的 $0$ 或 $1$ 距离小于等于 $k$,那么先手显然赢 如果最左边和最右的 $0$ 和 $1$ 中间都差了大于等于 $k$
阅读全文
摘要:传送门 不妨把每一堆按照石头数量从小到大排序 注意到每次只能拿一个石头,那么不论何时每堆石头的排名都是一样的 那么最终所有堆的状态一定就是 $0,1,2,...,n-1$,现在每一堆最终的石头数量都确定了 那么我们直接把每一堆的石头数量减去这一堆的排名,再加上 $1$,就得到每一堆能拿走的石头数量
阅读全文